A.V.V.M. Sri Pushpam College (Autonomous), Poondi – 613 503

PG & Research Department of Chemistry M.Sc., Programme in Chemistry OUTCOME BASED EDUCATION - CHOICE BASED CREDIT SYSTEM SCHEME OF PROGRAMME AND SYLLABUS (For the candidates admitted from 2023-2024 onwards)

Vision and Mission of the college

Vision

To provide quality academic programmes and value oriented higher education to the rural community, equip them to encounter current regional, national and global demands upholding moral standards and intellectual competency.

Mission

- To provide conducive environment for quality teaching-learning process and innovative research.
- To bestow substantial educational experience that is intellectually, socially, and personally transformative.
- To strive to bring out the latent potentiality and core competency of the learners
- To foster the culture of research-based learning, independent academic inquiry by encouraging the students to involve in research activities ranging from hands on training, student projects, publications etc.,
- To nurture essential skills, competent minds and compassionate hearts.
- To impart a practical, demanding and overall development of the personality generated by love, consideration and care for the society.
- To serve the society by extending needful outreach programmes to the rural populace.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

• Make the learners realise the transformative power of education.

- Acquire profound disciplinary, applied, integrative knowledge and intellectual competency and domain specific and generic skills.
- Pursue lifelong learning and generate innovative solutions for the problems at individual and social level.
- Create a collaborative and inclusive environment, and serve the betterment of the society with moral integrity.
- Motivate to become a committed professional with necessary ethics as a leader as well as a team player.

PROGRAMME OUTCOMES for Chemistry Programme

On the completion of the programme, the learners will be able to,

PO1: Profound expertise in discipline, interpret advanced and contemporary concepts, principle and theories in the appropriate field to solve real problems.

PO2: Acquire good communication and presentation skills, aid them to become employable.

PO3: Identify and formulate problems critically and integrate resources to reach decisions, make recommendations or carry out action plans.

PO4: Develop and write innovative, scientific research projects on emerging contemporary issues.

PO5: Broaden scientific approach not only with respect to science subjects but also in all aspects related to ethical moral and social values in personal and social life.

PO6: Function effectively in teams to create a collaborative and inclusive environment to achieve goals.

PO7: Expertise in independent and lifelong learning through online courses to fit in an ever-changing world.

PROGRAMME SPECIFIC OUTCOMES for M.Sc Chemistry Programme

On the completion of the programme, the learners would have,

PSO1: gathered comprehensive theoretical and practical knowledge in chemistry **PSO2:** acquired knowledge of organic synthesis, inorganic synthesis and medicinal chemistry for employment in research and development in all pharmaceutical fields.

PSO3: equipped themselves to analyze the compounds qualitatively and quantitatively which is useful for placement in quality control and formulation departments in analytical lab.

PSO4: develop the confidence to pursue research in thrust areas of chemistry

PSO5: acquired skill to understand chemistry related social, ethical, global and environmental responsibility for the benefit of the society

PSO6: adopted the principles of green chemistry and phytochemistry for designing experimental techniques to mitigate environmental pollution.

PSO7: confidently appear for competitive examinations such as NET, GATE, SET, UPSC, TNPSC, BARC, ONGC etc, and also to become entrepreneur

	Nature of Course	Total No. of Courses	Total marks	Total credits	Total credits for the Programme
	Core Course	13	1300	51	
Part – A	Elective Course	05	500	15	
	Extra Disciplinary Course	01	100	3	80 (CGBA)
	Core Industry Module (CIM)	01	100	3	(COFA)
Part – B (i)	Skill Enhancement Course (SEC)	04	400	8	
Part – B (ii)	Ability Enhancement Compulsory Course (AECC)	04	400	8	10 (Non CGPA)
	Internship / Industrial Activity			2	
	Total	28	2800	90	90
Value Added Course (VAC)		01	100		
Extra Credit Course - MOOC / Field visit / Hands on Training				Max: 4	

Curriculum Structure for PG Programmes (OBE- CBCS) - 2023

Part A component and Part B (i) will be taken into account for CGPA calculation for the postgraduate programme and the other components Part B and Part C have to be completed during the duration of the programme as per the norms, to be eligible for obtaining the PG degree

S.	Semester	ster Category Course Code		rse Code Title of the Course		mum	Marks	Minim	um Ma Pass	arks for	Hours/ Week	Credits
					CIA	EE	Total	CIA	EE	Total		
1		Core	23P1CHC1	Organic Reaction Mechanism-I	25	75	100	10	30	50	6	4
2		Core	23P1CHC2	Structure and Bonding in Inorganic Compounds	25	75	100	10	30	50	5	4
3		Core	23P1CHCP1	Organic Chemistry Practical	25	75	100	10	30	50	5	4
4	т	Elective	23P1CHEL1A/ 23P1CHEL1B	Material Science / Nanomaterials and Nanotechnology	25	75	100	10	30	50	5	3
5	-	Elective	23P1CHEL2A/ 23P1CHEL2B	Electrochemistry/ Molecular Spectroscopy	25	75	100	10	30	50	5	3
6		SEC1	23P1CHSEC1	Computational Chemistry	25	75	100	10	30	50	2	2
7		AECC1	23P1CHAECC1	Communicative Skill and Personality Development	25	75	100	10	30	50	2	2
		Extra Credit	Fiel	d visit / Hands on Training	-	-	-	-	-	-	-	-
8		Core	23P2CHC3	Organic reaction mechanism-II	25	75	100	10	30	50	6	4
9		Core	23P2CHC4	Physical Chemistry-I	25	75	100	10	30	50	5	4
10		Core	23P2CHCP2	Inorganic Chemistry Practical	25	75	100	10	30	50	5	4
11	II	Elective	23P2CHEL3A/ 23P2CHEL3B	Medicinal Chemistry/ Green Chemistry	25	75	100	10	30	50	5	3
12		Elective	23P2CHEL4A/ 23P2CHEL4B	Bio Inorganic Chemistry/ Cheminformatics	25	75	100	10	30	50	5	3
13		SEC 2	23P2CHSEC2	Domestic Chemicals Preparation	25	75	100	10	30	50	2	2
14		AECC 2	23P2CHAECC2	Language Lab	25	75	100	10	30	50	2	2

Course Structure: M.Sc. Chemistry (2023)

S.	S. Semes No. ter	Category	Course Code	Title of the Course	Maxi	imum I	Marks	Minimum Marks for Pass			Hours/	Credits
NO.	ter				CIA	EE	Total	CIA	EE	Total	Week	
15		Core	23P3CHC5	Organic synthesis and Photochemistry	25	75	100	10	30	50	6	4
16		Core	23P3CHC6	Coordination Chemistry – I	25	75	100	10	30	50	6	4
17		Core	23P3CHCP3	Physical Chemistry Practical	25	75	100	10	30	50	5	4
18		EDC	23P3CHEDC	Chemistry in Every Day Life	25	75	100	10	30	50	4	3
19	III	CIM	23P3CHCIM	Industrial Chemistry	25	75	100	10	30	50	5	3
20		SEC 3	23P3CHSEC3	Dye chemistry	25	75	100	10	30	50	2	2
21		AECC 3	23P3CHAECC3	Research Methodology	25	75	100	10	30	50	2	2
		Internship / In		ustrial Activity (Carried out in summer vacation at the end of I Year		I Year –	- 30 hours)			-	2	
		Extra Credit MOOC(Massive open online course)		ssive open online course)	-	-	-	-	-	-	-	-
22		Core	23P4CHC7	Coordination Chemistry-II	25	75	100	10	30	50	6	4
23		Core	23P4CHC8	Physical Chemistry-II	25	75	100	10	30	50	5	4
24		Core	23P4CHCP4	Analytical Instrumentation technique Practicals	25	75	100	10	30	50	5	4
25		Elective	23P4CHEL5A/ 23P4CHEL5B	Chemistry of Natural products/ Polymer Chemistry	25	75	100	10	30	50	5	3
26	IV	Core	23P4CHC9PR	Project with Viva Voce	25	75	100	10	30	50	5	3
27		SEC4	23P4CHSEC4	Paint chemistry	25	75	100	10	30	50	2	2
28		AECC4	23P4CHAECC4	Comprehensive Knowledge	-	100	100	-	-	50	2	2
				Total			2800					90
		Valu	e Add Course	Food additives & Preservation	-	100	100	-	50	50	SS	-
		Extra Cre	edit MOOC(M	assive open online course)	-	-	-	-	-	-	-	-

Internship/ Industrial Activity:

Students must complete in-plant training in any industry or organization where a programme-related procedure is being used, and this training must be done during the summer vacation at the end of I Year. A minimum of 30 hours should be spent on training. Students must submit a report on their training together with a certificate from the relevant industry or organization authority.

Ability Enhancement Compulsory Course (AECC): (Communicative Skill and Personality Development, Language Lab, Research Methodology and Comprehensive Knowledge)

Mode of Assessment for these courses is Viva-Voce examination.

Components of Evaluation: Internal Marks : 25 External Marks: 75 Total : 100

Field visit / Hands on Training:

In order to achieve experiential learning, these programmes with a minimum of 15 hours of contact time are offered as Extra Credit Courses in the I Semester.

Evaluation of visit report will be held at the end of II Semester.

Components of Evaluation: Internal Marks : 25 External Marks : 75 Total : 100

MOOC:

Massive Open Online Course is offered in the III and IV Semester as an Extra Credit Course. Students can avail any one or more of the courses available in MOOC to equip their skill and knowledge themselves. To receive the extra credit, students must provide their MOOC course completion certificate at the end of the second year.

Skill Enhancement courses (SEC) offer	ed by the Chemistry Department		
1. Computational Chemistry	2. Domestic Chemicals Preparation	3. Dye chemistry	4. Paint chemistry
Extra Disciplinary Course (EDC) offered b	y the Chemistry Department		

Chemistry in every Day Life

Value Added Course offered by the Chemistry Department:

"Food additives & Preservation" will be conducted for II PG students as a certificate Course.

A.VEERIYA VAND	OAYAR MEMORIA (NAAC Re-Acc Question Pat or the students	L SRI PUSHPAM CO THANJAVUR DIST. credited with A gradited tern for UG and PG admitted from 202	DLLEGE (AUTONOM de in 4 th cycle) Programmes 3 – 2024 onwards)	OUS),POONDI,					
Bloom's Taxonomy based Assessment pattern									
Bloom's category	Section	Choice	Marks	Total					
	А	Compulsory	$10 \ge 2 = 20$						
K1 to K6 B Either / Or $5 \times 5 = 25$ 75									
	С	3 out of 5	$3 \ge 10 = 30$						

OBE QUESTION PATTERN

Total Marks: 75

			SECTION – A $(10 \times 2 = 20)$
		Answei	All the questions (Two Questions from each units)
CO	K	Q. No.	Questions
	Level	1	
		1.	
		2.	
		5.	
		4.	
		5.	
		0.	
		7.	
		0.	
		9.	
		10.	SECTION $- B (5 \times 5 - 25)$
		Answe	SECTION – D $(5 \times 5 - 25)$ er All the questions (One Question from each unit)
		11(a)	
		11(u).	(\mathbf{OR})
		11(b)	
		12(a)	
	1	12(4).	(OR)
		12(b).	
		13(a).	
	1		(OR)
		13(b).	
		- (-)	
		14(a).	
	4		(OR)
		14(b).	
		15(a).	
	•		(OR)
		15(b).	
			SECTION – C $(3 \times 10 = 30)$
	1	Answer A	NY THREE questions (One Question from each unit)
		16.	
		17.	
		18.	
		19.	
		20.	

K1	K2	K3	K4	K5	K6
Remember	Understand	Apply	Analyze	Evaluate	Create
Choose	Associate	• Apply	Advertise	• Agree	Adapt
 Conv 	 Classify 	Build	 Appraise 	 Appraise 	Build
 Define 	Compare	Calculate	 Analyze 	 Assess 	Change
 Describe 	 Contrast 	• Change	• Assume	Award	Choose
 Discover 	 Convert 	Choose	Break down	Choose	Combine
 Duplicate 	Demonstrate	Complete	Categorize	Compare	Compile
• Enumerate	 Describe 	Construct	Classify	Conclude	Compose
• Examine	 Differentiate 	Demonstrate	Compare	Convince	Construct
• Find	 Discuss 	 Develop 	Conclusion	Criteria	Create
• How	 Distinguish 	 Discover 	• Connect	Criticize	 Design
• Identify	 Estimate 	Dramatize	 Contrast 	Decide	 Develop
• Label	 Explain 	• Experiment	• Differentiate	Deduct	 Discuss
• List	Express	• Identify	• Discover	 Defend 	Elaborate
• Locate	 Extend 	• Interview	• Dissect	Determine	• Estimate
• Match	• Identify	• Interpret	 Distinguish 	 Discriminate 	• Formulate
• Memorize	 Illustrate 	• Illustrate	• Discriminate	• Estimate	Generalize
• Name	 Indicate 	• Make use of	• Divide	• Evaluate	• Hypothesize
• Omit	• Infer	• Manipulate	• Examine	• Explain	• Imagine
• Recall	• Interpret	• Model	 Explain 	• Find errors	Improve
• Recognize	• Outline	 Modify 	• Function	Grade	• Integrate
• Relate	 Paraphrase 	Organize	• Inference	Importance	• Invent
• Select	• Predict	Paint	 Inspect 	Influence	• Make up
• Show	• Relate	• Plan	• List	 Interpret 	• Maximize
• Spell	• Rephrase	Prepare	• Motive	• Judge	• Minimize
• State	• Show	Produce	• Order	• Justify	 Modify
• Tabulate	• Summarize	• Relate	Point out	Mark	Originate
• Tell	• Translate	• Select	• Prioritize	• Measure	Organize
• What		• Show	• Relationships	• Order	• Plan
• When		• Sketch	• Select	• Predict	• Predict
• Where		• Solve	 Separate 	Prioritize	• Prepare
• Which		• Use	 Simplify 	• Prove	Produce
• Who		• Utilize	• Subdivide	Rank	• Propose
• Why			• Survey	• Rate	• Rearrange
			• Takepartin	• Recommend	• Rewrite
			• Testfor	Reframe	• Role-play
			• Theme	• Select	• Solution
				• Summarize	• Solve
				 Support 	• Substitute
				• Value	• Write

Bloom's Taxonomy Action Verbs

Semester	Course Code	Course Title	Hours of Teaching / Cycle	No. of Credits
Ι	23P1CHC1	ORGANIC REACTION MECHANISM - I	6	4
Objective of the course	 To under To comp To unde To corre To corre organic r To des compour 	rstand the feasibility and the mechanism of vario orehend the techniques in the determination of re- rstand the concept of stereochemistry involved date and appreciate the differences involved in reaction mechanisms. ign feasible synthetic routes for the p nds.	bus organicre actionmecha in organicce the various reparation	eactions. unisms. ompounds. types of of organic
Course Outline	UNIT-I: I intermediat and kinetic mechanism intermediat labelling, is of rate and equations. reaction cor UNIT-II: (4n+2) HN substitution nitrobenzer nitration, ni Halogen ele Crafts alk substitution	Methods of Determination of Reaction es, The transition state, Reaction coordinate dia requirements of reactions: Hammond postulate. : non-kinetic methods - product analyses es-isolation, detection, and trapping. Cross-over sotope effects and stereo chemical evidences. Kind mechanism. Effect of structure on reactivit Linear free energy relationship, partial rate enstants. Aromatic and Aliphatic Electrophilic Sub uckel's rule, aromatic of benzenoid compounds and halobenzene. Reactions involving trosation and diazonium coupling; Sulphur elected ectrophiles: chlorination and bromination; Carbo ylation, acylation and arylation reactions. Mechanisms: SE2 and SEi, SE1- Mechanism a	Mechanism: grams, Therr Methods of d sis, determiner rexperiment netic method ty: Hammett factor, subst pstitution: A s. Aromatic e polysubstitut nitrogen el etrophiles: su on electrophi Aliphatic en d evidences	Reaction modynamic letermining ination of its, isotopic ds - relation t and Taft tituent and Aromaticity: electrophilic ted phenol, lectrophiles: alphonation; les: Friedel- electrophilic s.
	UNIT-III:nucleophiliEvidencesnucleophileRosenmund S_N1 , ion paat an allyli S_E1 mechaAmbident r	Aromatic and Aliphatic Nucleophilic S c substitution: Mechanisms - S_NAr , S_N1 and - Reactivity, Effect of structure, leaving e. Reactions: Oxygen and Sulphur-nucleo d reactions, von Richter, Sommelet- Hauser and ir, S_N2 mechanisms and evidences. Aliphatic nu c carbon, aliphatic trigonal carbon and vinyl can nism and evidences, Swain- Scott, Grunwald- nucleophiles.	ubstitution: Benzyne me group and philes, Buc Smiles rearra icleophilic su rbon.S _N 1, S _N Winstein rel	Aromatic chanisms - l attacking herer and angements. ubstitutions v2, S _N i, and ationship -

	UNIT-IV: Stereochemistry-I: Introduction to molecular symmetry and chirality										
	– axis, plane, center, alternating axis of symmetry. Optical isomerism due to										
	asymmetric and dissymmetric molecules with C, N, S based chiral centers.										
	Optical purity, prochirality, enantiotopic and diastereotopic atoms, groups, faces,										
	axial and planar chirality, chirality due to helical shape, methods of determining										
	theconfiguration. Racemic modifications: Racemization by thermal, anion, cation,										
	reversible formation, epimerization, mutarotation. D, L system, Cram's and										
	Prelog's rules: R, S- notations, proR, proS, side phase and re phase Cahn-Ingold-										
	Prelog rules, absolute and relative configurations. Configurations of allenes,										
	spiranes, biphenyls, cyclooctene, helicene, binaphthyls, ansa and cyclophanic										
	compounds, exo-cyclic alkylidene-cycloalkanes. Topicity and prostereoisomerism,										
	chiral shift reagents and chiral solvating reagents. Criteria for optical purity:										
	Resolution of racemic modifications, asymmetric transformations, asymmetric										
	synthesis, destruction. Stereoselective and stereospecific synthesis.										
	UNIT-V: Stereochemistry-II: Conformation and reactivity of acyclic systems,										
	intramolecular rearrangements, neighbouring group participation, chemical										
	consequence of conformational equilibrium - Curtin-Hammett Principle. Stability										
	of five and six-membered rings: mono-, di- and polysubstituted cyclohexanes,										
	conformation and reactivity in cyclohexane systems. Fused and bridged rings:										
	bicyclic, poly cyclic systems, decalins and Brett's rule. Optical rotation and optical										
	rotatory dispersion, conformational asymmetry, ORD curves, octant rule,										
	configuration and conformation. Cotton effect, axial haloketone rule and										
	determination of configuration.										
Recommend	1. J. March and M. Smith, Advanced Organic Chemistry, 5 th edition, John-										
edText	Wiley and Sons.2001.										
	2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt,										
	Rinehart and Winston Inc., 1959.										
	3. P.S.Kalsi, Stereochemistry of carbon compounds, 8 th edition, New Age										
	International Publishers, 2015.										
	4. P. Y. Bruice, Organic Chemistry, 7 th edn, Prentice Hall, 2013.										
	5. J.Clayden, N. Greeves, S. Warren, Organic Compounds, 2 nd edition, Oxford										
	University Press, 2014.										
Reference	1. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part-Aand B,										
Books	5 th edition, Kluwer Academic / Plenum Publishers, 2007.										
	2. D. G. Morris, Stereochemistry, RSC Tutorial Chemistry Text 1, 2001.										
	3. N.S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987.										
	4. E. L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGraw Hill, 2000.										
	5. I. L. Finar, Organic chemistry, Vol-1 & 2, 6th edition, Pearson Education										
	Asia, 2004.										
Website and	1. <u>https://sites.google.com/site/chemistryebookscollection02/home/organic-</u>										
e-learning	chemistry/organic										
source	2. <u>https://www.organic-chemistry.org/</u>										

On the successful completion of the course, students will be able to

CO Number	CO Statement							
CO1	To recall the basic principles of organic chemistry.							
CO2	To understand the formation and detection of reaction intermediates of organicreactions.							
CO3	To predict the reaction mechanism of organic reactions and stereochemistry of organic compounds.	K4						
CO4	To apply the principles of kinetic and non-kinetic methods to determine the mechanismof reactions.	K5						
CO5	To design and synthesize new organic compounds by correlating the stereochemistry of organic compounds.	K6						

Cognitive Level:K1 - Remember; K2 - Understanding; K3 - Apply; K4 - Analyze;

K5 – Evaluate; **K6** – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	М	S	S
CO 2	Μ	S	S	S	S	Μ	S
CO 3	S	S	М	S	S	S	S
CO 4	М	S	S	S	S	М	S
CO 5	Μ	S	Μ	S	S	Μ	S
S – Stroi	ng	M -	- Mediu	m	•	L – Low	•

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO 5	3	3	3	3	3	3	3

Semester	Course Code	Course Title	Hours of Teaching / Cycle	No. of Credits
I	23P1CHC2 STRUCTURE AND BONDING IN INORGANIC COMPOUNDS		5	4
Objective of the cou	es To urse Clust • To g • To f • To s eval	group components of ionic chniques.	ounds and crystals. crystals. To	
Outline	on the geom rule of electr nd pyro silica silicates. St d P-N compo actural feature poranes; Wade sters –zintl ion	etry of the covalence - ates – one ructure of bunds; Poly es of closo, e's rule to ns and mno		
	UNIT-II: hexagonal systems ar screw axis Born-Land UNIT-III: Rock salt, cadmium perovskite (hydrother UNIT-IV: Bragg's 1 Interpretat: constants technique difference instrument	 Solid state chemistry – I: Ionic crystals: Paca and cubic close packing, voids in crystal latting Bravis lattices, Symmetry operations in cryst; point group and space group; Solid state energy equation -Kapustinski equation, Madelung com Solid state chemistry – II: Structural features zinc blende & wurtzite, fluorite and anti-fluction iodide and nickel arsenide; Spinels -normal structures. Crystal Growth methods: Fromal, sol-gel methods) – principles and examples. Techniques in solid state chemistry: X-ray aw, Powder diffraction method – Principle ion of XRD data – JCPDS files, Phase purity, S calculation; Systematic absence of reflection – principle, instrumentation and application. between optical and electron microscop ation, sampling methods and applications of SE. 	king of ions ce, Radius rat stals, glide rgetics: Lattic stant. s of the cryst orite, rutile and and inverse m melt and y diffraction and Instru cherrer form s; Electron Electron mic y, theory, M and TEM.	in simple, tio, Crystal planes and ce energy – al systems: nd anatase, types and d solution technique: mentation; ula, lattice diffraction roscopy – principle,

	UNIT-V: Band theory and defects in solids								
	Band theory – features and its application of conductors, insulators and								
	semiconductors, Intrinsic and extrinsic semiconductors; Defects in crystals – point								
	defects (Schottky, Frenkel, metal excess and metal deficient) and their effect on the								
	electrical and optical property, laser and phosphors; Linear defects and its effects								
	due to dislocations.								
Recommen	1. A R West, Solid state Chemistry and its applications, 2ndEdition(Students								
dedText	Edition), John Wiley & Sons Ltd., 2014.								
	2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers, Himalaya								
	Publishing House, 2001.								
	3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4 th Edition,								
	CRC Press, 2012.								
	4. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; W.B. Saunderscompany:								
	Philadelphia, 1977.								
	5. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry; 4th ed.;								
	Harper and Row: NewYork, 1983.								
Reference	1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and Models in								
Books	Inorganic Chemistry, 3rd Ed, 1994.								
	2. R J D Tilley, Understanding Solids - The Science of Materials, 2 nd edition,								
	Wiley Publication, 2013.								
	3. C N R Rao and J Gopalakrishnan, New Directions in Solid StateChemistry,								
	2 nd Edition, Cambridge University Press, 199.								
	4. T. Moeller, Inorganic Chemistry, A Modern Introduction; John Wiley:								
	New York, 1982.								
	5. D. F. Shriver, P. W. Atkins and C.H. Langford; Inorganic Chemistry; 3rd								
	ed.; Oxford University Press: London, 2001.								
Website	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry-								
and	2018/video_galleries/lecture-videos/								
e-learning									
source									

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Predict the geometry of main group compounds and clusters.	K1
CO2	Explain about the packing of ions in crystals and apply the radius ratio rule to predict the coordination number of cations.	K2
CO3	Understand the various types of ionic crystal systems and analyze their structural features.	К3
CO4	Explain the crystal growth methods.	K5
CO5	To understand the principles of diffraction techniques and microscopic techniques.	K6

Cognitive Level:K1 - Remember; K2 - Understanding; K3 - Apply; K4 - Analyze;

K5 – Evaluate; **K6** – Create

M.Sc. Chemistry

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	М	S	S
CO 2	M	S	S	S	S	М	S
CO 3	S	S	Μ	S	S	S	S
CO 4	M	S	S	S	S	М	S
CO 5	Μ	S	Μ	S	S	М	S
S – Stron	g	M -	- Mediu	m		L – Lo	w

CO-PO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	Course Code	Course Title	Hours of Teaching / Cycle	No. of Credits
Ι	23P1CHCP1	ORGANIC CHEMISTRY PRACTICAL	5	4
Objective of the course Course Outline	es To under of organ To dev separatie To anal them su To com involvim To exper processi UNIT-I: Se A. Two c B. Three UNIT-II: F a) Est b) Est c) Est d) Est b) Est c) Est d) Est g) Est h) Est g) P-N c) 1,3,5 g) Acet en g) P-N c) 1,3,5 g] Acet en g) P-N	erstand the concept of separation, qualitative a ic compounds. elop analytical skill in the handling of c on of binary and ternary organic mixtures. yze the separated organic components system tably. struct suitable experimental setup for the g two stages. eriment different purification and drying technic ng. paration and analysis: omponent mixtures. component mixtures. stimations: imation of Phenol (bromination) imation of Aniline (bromination) imation of Ethyl methyl ketone (iodimetry) imation of Glucose (redox) imation of Ascorbic acid (iodimetry) imation of Aromatic nitro groups (reduction) imation of Aromatic nitro groups (reduction) imation of Aromatic nitro groups (reduction) imation of Acetyl group in ester (alkalimetry) imation of Hydroxyl group (acetylation) Two stage preparations: omoacetanilide from aniline itroaniline from acetanilide -Tribromobenzene from aniline yl salicyclic acid from methyl salicylate zilic acid from benzoin itroaniline from nitrobenzene zoic acid from methyl benzoate	nalysis and p hemical rea hatically and organic pr ques for the	reparation gents for derivative eparations compound
Recomm dedText	en 1. A R W Edition 2. A K B Publish 3. L Sma	Vest, Solid state Chemistry and its applications,), John Wiley & Sons Ltd., 2014. hagi and G R Chatwal, A textbook of inorganic ing House, 2001. rt, E Moore, Solid State Chemistry – An Intro-	2ndEdition (polymers, H duction, 4 th B	Students imalaya Edition,

	CRC Press, 2012.
Reference	1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and Models in
Books	Inorganic Chemistry, 3rd Ed, 1994.
	2. R J D Tilley, Understanding Solids - The Science of Materials, 2 nd edition,
	Wiley Publication, 2013.
	3. C N R Rao and J Gopalakrishnan, New Directions in Solid StateChemistry,
	2 nd Edition, Cambridge University Press, 199.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state- chemistry-fall-
e-learning	2018/video_galleries/lecture-videos/
source	

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	To recall the basic principles of organic separation, qualitative analysis and preparation	K1
CO2	To explain the method of separation and analysis of separated organic mixtures and convert them as derivatives by suitable preparation method.	К3
CO3	To determine the characteristics of separation of organic compounds by various chemicalreactions.	K2
CO4	To develop strategies to separate, analyze and prepare organic compounds.	K5
CO5	To formulate a method of separation, analysis of organic mixtures and design suitable procedure for organic preparations.	K6

Cognitive Level:K1 - Remember; K2 - Understanding; K3 - Apply; K4 - Analyze; **K5** – Evaluate; **K6** – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	Μ	S	S
CO 2	Μ	S	S	S	S	Μ	S
CO 3	S	S	Μ	S	S	S	S
CO 4	Μ	S	S	S	S	Μ	S
CO 5	Μ	S	Μ	S	S	Μ	S
			N.4	Madiu			

S – Strong

M – Medium

L – Low

Level of Correlation between PSO's and CO'	S
--	---

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	Course Code		Course Title	Hours of Teaching / Cycle	No. of Credits				
I	23P1CH	IEL1A	Major Elective – I MATERIAL SCIENCE	5	3				
Objectives of the course • •			Fo understand the crystal structure, growth methods and X-ray scattering. Fo explain the optical, dielectric and diffusion properties of crystals. To recognize the basis of semiconductors, superconductivity materials and magnets. To study the synthesis, classification and applications of nanomaterials. To learn about the importance of materials used for renewable energy conversion.						
Course Outline		UNIT- system Laue e crystal Electro	T-I: Crystallography: symmetry - unit cell and Miller indices - crystal ems - Bravais lattices - point groups and space groups - X-ray diffraction- e equations-Bragg's law-reciprocal lattice and its application to geometrical callography. Crystal structure–powder and single crystal applications.						
diff UN met Gel met Gel Flu			diffraction-method and applications. UNIT-II: Crystal growth methods: Nucleation–equilibrium stability and metastable state. Single crystal –Low and high temperature, solution growth– Gel and sol-gel. Crystal growth methods- nucleation– equilibrium stability and metastable state. Single crystal–Low and high temperature, solution growth– Gel and sol-gel. Melt growth - Bridgeman-Stockbarger,Czochralski methods. Flux technique, physical and chemical vapour transport. Lorentz and polarization factor - primary and secondary extinctions						
		UNIT-III: Properties of crystals: Optical studies - Electromagnetic spectrum (qualitative) refractive index – reflectance – transparency, translucency and opacity. Types of luminescence – photo-, electro-, and injection luminescence, LEDs – organic, Inorganic and polymer LED materials - Applications. Dielectric studies- Polarisation - electronic, ionic, orientation, and space charge polarisation. Effect of temperature. dielectric constant, dielectric loss. Types of dielectric breakdown– intrinsic, thermal, discharge, electrochemical and defect breakdown.							
UN tem theo Hys ferri reco and line quar			UNIT-IV: Special Materials: Superconductivity: Meissner effect, Critical temperature and critical magnetic Field, Type I and II superconductors, BCS theory-Cooper pair, Applications. Soft and hard magnets – Domain theory Hysteresis Loop-Applications. Magneto and gian magneto resistance. Ferro, ferri and antiferromagnetic materials- applications, magnetic parameters for recording applications. Ferro-, Piezo-, and pyro electric materials – properties and applications. Shape memory Alloys-characteristics and applications, Non-linear optics- Second Harmonic Generators, mixing of Laser wavelengths by quartz, ruby and LiNbO ₃ .						

	UNIT-V: Materials for Renewable Energy Conversion: Solar Cells:							
	Organic, bilayer, bulk heterojunction, polymer, perovskite based. Solar energy							
	conversion: lamellar solids and thin films, dye-sensitized photo voltaic cells,							
	coordination compounds anchored onto semiconductor surfaces - Ru(II) and							
	Os(II) polypyridyl complexes. Photochemical activation and splitting of water,							
	CO2 and N2. Manganese based photo systems for water-splitting. Complexes							
	of Rh, Ru, Pd and Pt - photochemical generation of hydrogen from alcohol.							
Recommended	1. S. Mohan and V. Arjunan, Principles of Materials Science, MJP							
Text	Publishers, 2016.							
	2. Arumugam, Materials Science, Anuradha Publications, 2007.							
	3. Giacavazzo et. al., Fundamentals of Crystallography, InternationalUnion							
	of Crystallography. Oxford Science Publications, 2010							
	4. Woolfson, An Introduction to Crystallography, Cambridge UniversityPress,							
	2012.							
	 James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6th ed., PEARSON Press, 2007. 							
Reference	1.Suggested Readings 1. M.G. Arora, Solid State Chemistry, Anmol							
Books	Publications, New Delhi, 2001.							
	2.R.K. Puri and V.K. Babbar, Solid State Physics, S Chand and Company Ltd, 2001.							
	3. C. Kittel, Solid State Physics, John-Wiley and sons, NY, 1966.							
	4. H.P. Meyers, Introductory Solid State Physics, Viva Books Private							
	Limited, 1998.							
	5. A.R. West, Solid State Chemistry and Applications, John-Wiley and sons,							
	1987.							
Website and	1. http://xrayweb.chem.ou.edu/notes/symmetry.html.							
e-learning	2. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf.							
source	1. <u>https://bit.ly/3QyVg2R</u>							

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	To understand and recall the synthesis and characteristics of crystal structures, semiconductors, magnets, nanomaterials and renewable energy materials.	K1
CO2	To integrate and assess the structure of different materials and their properties.	K2
CO3	To analyse and identify new materials for energy applications.	K3
CO4	To explain the importance of crystal structures, piezoelectric and pyroelectric materials, nanomaterials, hard and soft magnets, superconductors, solar cells, electrodes, LED uses, structures and synthesis.	K5
CO5	To design and develop new materials with improved property for energy applications.	K6

Cognitive Level:K1 - Remember; **K2** - Understanding; **K3** - Apply; **K4** - Analyze; **K5** – Evaluate; **K6** – Create

M.Sc. Chemistry

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	М	S	S
CO 2	Μ	S	S	S	S	Μ	S
CO 3	S	S	Μ	S	S	S	S
CO 4	М	S	S	S	S	М	S
CO 5	М	S	Μ	S	S	Μ	S
M – Medium							

CO-PO Mapping (Course Articulation Matrix)

S – Strong

L – Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	Course Cod	Code Course Title		No. of Credits
Ι	23P1CHEL1	Major Elective – I NANO MATERIALS AND NANO TECHNOLOGY	5	3
Objectiv course	es of the	 To understand the concept of nano materials at To understand the various types of nano properties. To understand the applications of synthet materials. To correlate the characteristics of various nan bynew technologies. To design synthetic routes for synthetically use 	nd nano techn o materials tically impor o materials s	ology. and their tant nano ynthesized
Course Outline	U rc D B T U B M ch g¢ er sy	NIT-I: Introduction of nanomaterials and nanotechle of size, classification-0D, 1D, 2D, 3D. Synthes own, consolidation of Nano powders. Featurackground of nanostructures. Techniques of syntheols of the nanoscience. Applications of nanomaterials onding in a Substance crystal structure. Metallic na aterials, Nanoparticle Size and Properties. Sy emical methods - inert gas condensation, arc dischal, solvothermal and hydrothermal-CVD-types, m hanced, and low-pressure CVD. Microwave assist nthesis.	nnologies, Intr sis- Bottom – es of nano erials of nano erials and tecl , Predicting th noparticles, S nthesis- Phy arge, laser abl etallo organi ted and electr	roduction- Up, Top- structures, materials, mologies. ne Type of urfaces of sical and ation, sol- c, plasma ochemical
	U m na N Sy U of of of of an A p	NIT-III: Mechanical properties of materials, echanical properties. Techniques to study meanomaterials, adhesion and friction, thermal prop- anoparticles: gold and silver, metal oxides: silica, in <u>inthesis and properties</u> . NIT-IV: Electrical properties, Conductivity and R Materials based on Conductivity, magnetic propert materials. Classification of magneticphenomena. S classification-Ge, Si, GaAs, SiC, GaN, GaP, CdS aterials as p and n –type semiconductor-Hall omalous, Hall voltage - interpretation of c oplications of semiconductors: p-n junction as tra otovoltaic and photogalvanic cell.	theories re chanical pro erties of nan con oxide and esistivity, Cla ies, electronic Semiconducto S,PbS. Identii effect - qua harge carrie ansistors and	levant to perties of omaterials alumina - issification properties r materials fication of intum and r density. rectifiers,

	UNIT-V: Nano thin films, nanocomposites. Application of nanoparticles in
	different fields. Core-shell nanoparticles - types, synthesis, and properties.
	Nanocomposites - metal-, ceramic- and polymer-matrix composites-
	applications. Characterization - SEM, TEM and AFM - principle,
	instrumentation and applications.
Recommended	1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP
Text	Publishers, 2016.
	2. Arumugam, Materials Science, Anuradha Publications, 2007.
	3. Giacavazzo et. al., Fundamentals of Crystallography, International
	Union of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge
	University Press, 2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to
	Materials Science for Engineers. 6 th ed., PEARSON Press, 2007.
Reference	1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP
Books	Publishers, 2016.
	2. Arumugam, Materials Science, Anuradha Publications, 2007.
	3. Giacavazzo et. al., Fundamentals of Crystallography, International
	Union of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge
	University Press, 2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to
	Materials Science for Engineers. 6 th ed., PEARSON Press, 2007.
Website and	1. http://xrayweb.chem.ou.edu/notes/symmetry.html.
e-learning	2. <u>http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf</u> .
source	

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	To explain methods of fabricating nanostructures.	K1
CO2	To relate the unique properties of nanomaterials to reduce dimensionality of thematerial.	К3
CO3	To describe tools for properties of nanostructures.	K2
CO4	To discuss applications of nanomaterials.	K5
CO5	To understand the health and safety related to nanomaterial.	K6

Cognitive Level: K1 - Remember; K2 - Understanding; K3 - Apply; K4 - Analyze;

K5 – Evaluate; K6 – Create

M.Sc. Chemistry

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	М	S	S
CO 2	Μ	S	S	S	S	Μ	S
CO 3	S	S	Μ	S	S	S	S
CO 4	Μ	S	S	S	S	М	S
CO 5	Μ	S	Μ	S	S	Μ	S
	•			N/adiu			•

CO-PO Mapping (Course Articulation Matrix)

S – Strong

M – Medium

L – Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	Course Code		Course Title	Hours of Teaching / Cycle	No. of Credits		
I	23P1CHEL2A		Major Elective – II ELECTROCHEMISTRY	5	3		
Objectives of the course			 To understand the behavior of electrolytes in terms of conductance, ionicatmosphere, interactions. To familiarize the structure of the electrical double layer of differentmodels. To compare electrodes between current density and over potential. To discuss the mechanism of electrochemical reactions. To highlight the different types of over voltages and its applications in electro analytical techniques. 				
Course UN Outline rela activitioni coert solv mod of e Hud veri			IT-I: Ionics : Arrhenius theory -limitations, van't Hoff factor and its tion to colligative properties. Deviation from ideal behavior. Ionic vity, mean ionic activity and mean ionic activity coefficient-concept of ic strength, Debye Huckel theory of strong electrolytes, activity fficient of strong electrolytes Determination of activity coefficient ion vent and ion-ion interactions. Born equation. Debye-Huckel Bjerrum del. Derivation of Debye-Huckel limiting law at appreciableconcentration electrolytes modifications and applications. Electrolyticconduction-Debye-ckel Onsager treatment of strong electrolyte- qualitative and quantitative ification and limitations. Evidence for ionic atmosphere. Ion association				
UN Evid inte curv stre Stru mod		UNI Evid inter curv strea Struc mod App	T-II: Electrode-electrolyte interface: Interfacial phenomena - ences for electrical double layer, polarizable and non-polarizable faces, Electrocapillary phenomena - Lippmann equation electrocapillary es. Electro-kinetic phenomena electro-osmosis, electrophoresis, ming and sedimentation potentials, colloidal and poly electrolytes. cture of double layer: Helmholtz -Perrin, Guoy- Chapman and Stern els of electrical double layer. Zeta potential andpotential at zero charge. lications and limitations				
UNI elec Catl pola over reac net sym			T-III: Electrodics of Elementary Electrode rodes: Standard electrodes and electrodes at odic currents, condition for the discharge of rizable and non-polarizable electrodes. Model potential. Rate of electro chemical reactions: I ions. Butler-Volmer equation-significance of urrent density and symmetry factor. Low and netry factor and transfer coefficient Tafel equa	e Reactions: equilibrium. of ions. Nerra of three elect Rates of simple exchange cur high field app tions and Tafe	Behavior of Anodic and ist equation, rode system, e elementary rent density, roximations. el plots.		

	UNIT-IV: Electrodics of Multistep Multi Electron System: Rates of
	multi-step electrode reactions, Butler - Volmer equation for a multi-step
	reaction. Rate determining step, electrode polarization and depolarization.
	Transfer coefficients, its significance and determination, Stoichiometric
	number. Electro-chemical reaction mechanisms-rate expressions, order, and
	surface coverage. Reduction of I^{3-} , Fe^{2+} , and dissolution of Fe to Fe^{2+} .
	Overvoltage - Chemical and electro chemical Phase activation and
	concentration over potentials Evolution of oxygen and hydrogen at different
	pH Pourbiax and Evan's diagrams
	UNIT-V: Concentration Polarization. Batteries and Fuel cells: Modes of
	Transport of electro active species - Diffusion migration and hydrodynamic
	modes Role of supporting electrolytes Polarography- principle and
	applications Principle of square wave polarography Cyclic voltammetry-
	anodic and cathodic stripping voltammetry and differential pulse voltammetry
	Sodium and lithium-ion batteries and redox flow batteries Mechanism of
	charge storage: conversion and alloving Capacitors- mechanism of energy
	storage charging at constant current and constant voltage Energy production
	systems: Fuel Cells: classification alkaline fuel cells, phosphoric acid fuel
	cells high temperature fuel cells
Recommended	1 D R Crow Principles and applications of electrochemistry
Text	4thedition Chapman & Hall/CRC 2014
ICAL	2 I Rajaram and I C Kurjakose Kinetics and Mechanism of chemical
	transformations Macmillan India I td New Delhi 2011
	3 S Glasstone Electro chemistry Affiliated East-West Press Pyt I td
	New Delhi 2008
	A B Viswanathan S Sundaram R Venkataraman K Rengarajan and
	PS Raghavan Electrochemistry-Principles and applications S
	Viswanathan Printers Chennai 2007
	5 Joseph Wang Analytical Electrochemistry 2 nd edition Wiley 2004
Reference Books	1 I O M Bockris and A K N Reddy Modern Electro chemistry vol land
Reference Dooks	2B Springer Plenum Press New York 2008
	2 LOM Bockris AKN Reddy and MG Aldeco Morden Electro
	chemistry vol 2A Springer Plenum Press New York 2008
	3. Philip H. Rieger, Electrochemistry, 2 nd edition, Springer, New York.
	2010.
	4. L.I. Antropov. Theoretical electrochemistry. Mir Publishers, 1977.
	5. K.L. Kapoor, A Text book of Physical chemistry, volume-3.
	Macmillan. 2001.
Website and	1. https://www.pdfdrive.com/modern-electrochemistry-e34333229.
e-learning source	<u> </u>
1	

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	To understand the behaviour of electrolytes in solution and compare the structures of electrical double layer of different models.	K1
CO2	To predict the kinetics of electrode reactions applying Butler-Volmer and Tafel equations.	K2
CO3	To study different thermodynamic mechanism of corrosion.	K4
CO4	To discuss the theories of electrolytes, electrical double layer, electronics and activitycoefficient of electrolytes.	K3
CO5	To have knowledge on storage devices and electrochemical reaction mechanism.	K6

Cognitive Level:K1 - Remember; K2 - Understanding; K3 - Apply; K4 - Analyze;

K5 – Evaluate; **K6** – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	Μ	S	S
CO 2	Μ	S	S	S	S	М	S
CO 3	S	S	Μ	S	S	S	S
CO 4	Μ	S	S	S	S	Μ	S
CO 5	Μ	S	Μ	S	S	Μ	S
					•		

S – Strong

M – Medium

L – Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	Course Code	Course Title	Hours of Teaching / Cycle	No. of Credits			
Ι	23P1CHEL2B	Major Elective – II MOLECULAR SPECTROSCOPY	5 3				
Objectiv ofthe course	 To un polya To s spectri To hi rule, i To in coupl To catechn 	nderstand the influence of rotation and vib tomic molecules. tudy the principle of Raman spectrosco coscopy and fragmentation patterns in Mass sp ghlight the significance of Franck-Condon pr intensity and types of electronic transitions. interpret the first and second order NMR sp ing patterns using correlation techniques such arry out the structural elucidation of mol- iques.	prations on the s py, ESR spectro pectroscopy. inciple to interpre- ectra in terms of as COSY, HETC ecules using diff	pectra of the oscopy, EPR et the selection f splitting and OR, NOESY. Ferent spectral			
Cou rse Outl ine	UNIT-I: polyatomi substitutio tensor, po Raman sp Vibrationa rotational UNIT-II: anharmon vibrationa energies o substitutio molecules Vibrations frequencie R branch molecules	Rotational and Raman Spectroscopy: Rota c molecules. Intensities of rotational spec on. Non-rigid rotators. Classical theoryof the F larizability ellipsoids, quantum theory of the ectra of linear and asymmetric top molecules al Raman spectra, Raman activity of vibration fine structure-O and S branches, Polarization Vibrational Spectroscopy: Vibrations ic oscillators- vibrational energy express l wave functions and their symmetry, select of spectral lines, computation of intensities, on. Diatomic vibrating rotor, vibrational-re, p, R branches, breakdown of the Born s of polyatomic molecules – symmetry prope es. Influence of rotation on vibrational spectra es, parallel and perpendicular vibrations	ational spectra of ctral lines, effec Raman effect, pola e Raman effect, P s, Stokes and anti- ions, rule of mut on of Raman scatt of molecules, h sion, energy le ction rules, expre- hot bands, effec otational spectra i-Oppenheimer ar rties, overtone an a of polyatomic m of linear and sy	diatomic and t of isotopic rizability as a ure rotational -Stokes lines. ual exclusion, ered photons. armonic and vel diagram, ession for the et of isotopic of diatomic pproximation. d combination olecule, P, Q, ymmetric top			
	UNIT-III spectrosco predissoci Photoelect molecules inversion,	: Electronic spectroscopy: Electronic opy of diatomic molecules, Frank-Condo ation spectra. $\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$ transitions tron Spectroscopy: Basic principles, pho , Xray photoelectron spectroscopy (XPS). L properties of laser radiation, examples of sim	c Spectroscopy n principle, diss and their sel toelectron spect asers: Laser action ple laser systems.	Electronic sociation and ection rules. a of simple on, population			

	UNIT-IV: NMR and ESR spectroscopy: Chemical shift, Factors influencing
	chemical shifts: electronegativity and electrostatic effects; Mechanism of shielding and
	deshielding. Spin systems: First order and second order coupling of AB systems,
	Simplification of complex spectra. Spin-spin interactions: Homonuclear coupling
	interactions - AX, AX2, AB types. Vicinal, germinal and long-range coupling-spin
	decoupling. Nuclear Overhauser effect (NOE), Factors influencing coupling constants
	and Relative intensities. 13CNMR and structural correlations, Satellites. Brief
	introduction to 2D NMR - COSY, NOESY. Introduction to 31P, 19F NMR. ESR
	spectroscopy Characteristic features of ESR spectra, line shapes and line widths; ESR
	spectrometer. The g value and the hyperfine coupling parameter (A), origin of
	hyperfine interaction. Interpretation of ESR spectra and structure elucidation of organic
	radicals using ESR spectroscopy; Spin orbit coupling and significance of g- tensors,
	zero/non-zero field splitting, Kramer's degeneracy, application to transition metal
	complexes (having one to five unpaired electrons) including biological molecules and
	inorganic free radicals. ESR spectra of magnetically dilute samples.
	UNIT-V: Mass Spectrometry, EPR and Mossbauer Spectroscopy: Ionization
	techniques- Electron ionization (EI), chemical ionization (CI), desorption ionization
	(FAB/MALDI), electrospray ionization (ESI), isotope abundance, molecular ion,
	fragmentation processes of organic molecules, deduction of structure through mass
	spectral fragmentation, high resolution. Effect of isotopes on the appearance of mass
	spectrum. EPR spectra of anisotropic systems - anisotropy in g- value, causes of
	anisotropy, anisotropy in hyperfine coupling, hyperfinesplitting caused by quadrupole
	nuclei. Zero-field splitting (ZFS) and Kramer's degeneracy. Applications of EPR to
	organic and inorganic systems. Structural elucidation of organic compounds by
	combined spectral techniques. Principle of Mossbauer spectroscopy: Doppler shift,
	recoil energy. Isomer shift, quadrupole splitting, magnetic interactions. Applications:
	Mossbauer spectra of high and low-spin Fe and Sn compounds.
Recommen	1. N. Banwell and E. M. McCash, <i>Fundamentals of Molecular Spectroscopy</i> , 4 th Ed.,
dedText	Tata McGraw Hill, New Delhi, 2000.
	2. R. M. Silverstein and F. X. Webster, Spectroscopic Identification of Organic
	Compounds, 6 th Ed., John Wiley & Sons, New York, 2003.
	3. W. Kemp, Applications of Spectroscopy, English Language Book Society, 1987
	4. D. H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, 4
	Ed., 1 ata McGraw-Hill Publishing Company, New Deini, 1988.
D	5. R. S. Drago, <i>Physical Methods in Chemistry</i> ; Saunders: Philadelphia, 1992.
Reference	1. P.W. Alkins and J. de Paula, <i>Physical Chemistry</i> , 7 Ed., Oxford University Press, Oxford 2002
DOOKS	Piess, Oxioid, 2002.
	2. I. N. Levine, <i>Molecular Spectroscopy</i> , John whey & Sons, New York, 1974.
	5. A. Kalinali, Nuclear Magnetic Resonance-Dasic Frinciples, Springer-Verlag,
	New IOIN, 1900. A. K. Nakamoto Infrared and Daman Speatra of Incurania and eccertingtics.
	4. K. INAKAIIIOIO, Infrarea and Kaman Spectra of Inorganic and Coordination Compounds PartB: 5th ed. John Wiley & Sons Inc. New York 1007
	5 I A Weil I P Bolton and I E Wortz Electron Daramagnetic Personance.
	J. J. A. WEII, J. K. DOITOII AIIU J. E. WEITZ, <i>Electron Paramagnetic Resonance</i> ; Wiley Interscience, 1004
	ווערואטופט אוניאטופט איז

Website and	1. https://onlinecourses.nptel.ac.in/noc20_cy08/preview
e-learning	2. https://www.digimat.in/nptel/courses/video/104106122/L14.html
Source	

On the successful completion of the course, students will be able to

CO	CO Statamont	Cognitive
Number	CO Statement	Level
CO1	To understand the importance of rotational and Raman spectroscopy.	K1
CO2	To apply the vibrational spectroscopic techniques to diatomic and	K3
	polyatomic molecules.	
CO3	To evaluate different electronic spectra of simple molecules using	K3
	electronic spectroscopy.	
CO4	To outline the NMR, ¹³ C NMR, 2D NMR – COSY, NOESY,	K4
	Introduction to ³¹ P, ¹⁹ FNMR and ESR spectroscopic techniques.	
CO5	To develop the knowledge on principle, instrumentation and structural	K5
	elucidation of simple molecules using Mass Spectrometry, EPR and	
	Mossbauer Spectroscopy techniques.	

Cognitive Level:K1 - Remember; K2 - Understanding; K3 - Apply; K4 - Analyze;

K5 – Evaluate; **K6** – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	Μ	S	S
CO 2	Μ	S	S	S	S	М	S
CO 3	S	S	Μ	S	S	S	S
CO 4	Μ	S	S	S	S	М	S
CO 5	М	S	Μ	S	S	Μ	S

S – Strong

M – Medium

L – Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	Course Code	Course Title	Hours of Teaching / Cycle	No. of Credits
Ι	23P1CHSEC1	Skill Enhancement Course - Computational Chemistry	2	2
I Objectiv course Course Outline	23P1CHSEC1 es of the	Computational Chemistry nain objectives of this course are to: Understand the various types of databases and the quarries. learn how to build new chemical structures. understand how to derive, represent and manereactions of molecules. I: Basics of Cheminformatics nical-biological databases and data sources; (Promats; (MOL, SDF, PDB formats), File formatel. puter assisted drug design (Likeness Prediction - Properties of small moleliprediction, Bioavailability, Toxicity studie nacodynamics ofdrugs (Swiss ADME &PreADM putational quantum chemistry mathematical energy surface- stationary point, saddle poileibal minima, Basis sets, Quantum mechanical computational methods. II: Software Training nistry related softwares - Structure drawinelling softwares,Molecular visualization gadro,Chemdraw, Chem-3D,Pymol& Discovery rieving chemical and biological information	2 heir utility to ipulate the s (5 hou ubchem& PE t conversion 7 hours) ecules, struct s, Pharmaco MET servers) 3 hours) nt or transitio computationa methods. (8 hou ng software and doo Studio). from online	2 solve various tructures and irs) DB) Chemical using OPEN tural features, okinetics and o. on state, local l methods-Ab Non-quantum irs) s, molecular cking tools e data bases
	(mo Prec Cor 1. S n 2. C 3. Io 4. C li 5. C a 6. R	linspiration), Regression analysis of the given seliction of UV-Spectra of the given molecules usi nputational Chemistry Experiments (ingle point energy and vibrational frequence toolecules alculation of energy of HOMO and LUMO of si- poinsation energy and electron affinity calculation alculation of ADMET properties of some dru- keliness toxicity). alculation of the topological and molecular pa- nd Chem-3D. etrieving chemical and biological information Swiss Prot, NCI, PDB and CCDC).	et of data (Ma ng Argus La 7 hours) cy calculation imple organions. ags using Dr arameters from	S-Excel) and b. on of simple c molecules cuLiTo (Drug om chemdraw ne data bases

M.Sc. Chemistry

7. Use of online compound collection data bases (molinspiration).
8. Analyse the hydrogen bonding interaction in the given host guest molecules
using HBAT.
9. Regression analysis of the given set of data (MS-Excel).
10. Docking: Small molecule docking using Chemdraw.
11. QSAR :
a) Calculation of Clog P values
b) Effect of functional group on activity
c) Drawing QSAR plot based on the QSAR results.
12. Molecular visualization and interconversion using JMOL, chemissian.
Prediction of UV-Spectra of the given molecules using ArgusLab.

Course Outcomes (for Mapping with POs and PSOs)

On the successful completion of the course, students will be able to

CO	CO Statement	Cognitive		
Number				
CO1	understand the Chemical-biological databases and data sources	K2		
CO2	predict and understand the various Drug Likeness properties	K2		
CO3	understand the spatial structures of molecules	K2		
CO4	drawing, analyzing and retrieving the chemical information from	K5		
001	chemistry related software and online databases.			
CO5	evaluate how two or more molecular structures fit together	K5		

Cognitive Level:K1 - Remember; **K2** - Understanding; **K3** - Apply; **K4** - Analyze; **K5** – Evaluate; **K6** – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	S	S	S	S	М	S	S
CO2	М	S	S	S	S	Μ	S
CO3	S	S	Μ	S	S	S	S
CO4	Μ	S	S	S	S	Μ	S
CO5	Μ	S	Μ	S	S	Μ	S

S– Strong

M– Medium

L – Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7			
CO1	3	3	3	3	3	3	3			
CO2	3	3	3	3	3	3	3			
CO3	3	3	3	3	3	3	3			
CO4	3	3	3	3	3	3	3			
CO5	3	3	3	3	3	3	3			

Semester	Course C	ode	Course Title	Hours of Teaching / Cycle	No. of Credits		
Ι	23P1CHAI	ECC1	Ability Enhancement Compulsory Course - Communication Skill and Personality Development	2	2		
Objectiv	ves of the	٠	To cultivate positive personality traits for suc	cessful life.			
course		•	To groom Winning Attitude among the learns	5.			
		•	To assist the learners to identify their own po aspirations.	otential and rea	lize their		
		٠	To enable a holistic development.				
		•	To facilitate optimum means of improving pe	rsonal perform	ance.		
Course		UNIT	I:				
Outline		1. Pe	ersonality – Definition.				
		2. D	eterminants of Personality				
		3. Pe	erceptual process				
		4. Pe	ersonality Traits				
		5 Developing Effective Habits					
		6 Se	elf esteem (freud and Erikson)				
		0. Sc 7 Se	of esteen (need and Enison)				
		7. 50 8 D	os and Don'ts to develop positive self esteem				
		0. D	ternersonal Relationshin				
		10 D	ifference between Aggressive Submissive and Assertive	e behavior			
		10. D	lind Manning Competence manning 360 degree assess	ment			
		12 Pr	esentation skills _ opening ending handling nerves	handling audien	ce nower		
		12.11 ste	orvtelling visual aids Question and answer session	nandning addien	a, power		
		1. Pr	rojecting positive body language				
		2. C	onfilict management				
		3. C	hange management				
		4. St	ress management				
		5. Ti	ime management				
		6. G	oal setting				
		7. A	ssertiveness and negotiating skill				
		δ. Pi 0 Γ	codeni solving skills				
		7. D 10 L	eadership qualities of a successful leader				
		11. A	ttitude – positive attitudes				
		12. Pi	blic speaking – Engaging, connecting and influ	encing the audi	ences.		
		13. Ei	mployability skill - group discuss, interview of	questions, psyc	chometric		
		ar	nalysis.				

Reference	1. Hurlock.E.B (2006) : Personality Development, 28 th Reprint, New
Books	Delhi : Tata McCraw Hill.
	2. Stephen .P.Robbiuns and Timothy. A.Judge (2014): Organisation
	Behaviour . 16 th Edition. Prentice Hall

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Gain self confidence and proden perception of life	K1
CO2	Maximize their potential and steer that into their career choice.	K2, K3
CO3	Enhance one's self image & self esteem	K3
CO4	Find a means to achieve excellence and derive fulfilment	K4

Cognitive Level:K1 - Remember; **K2** - Understanding; **K3** - Apply; **K4** - Analyze; **K5** – Evaluate; **K6** – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	М	S	S
CO 2	Μ	S	S	S	S	Μ	S
CO 3	S	S	Μ	S	S	S	S
CO 4	Μ	S	S	S	S	Μ	S
CO 5	Μ	S	Μ	S	S	Μ	S
	•				•	•	

S – Strong

M – Medium

L – Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester Course	Code	Course Title	Hours of Teaching / Cycle	No. of Credits
II 23P20	CHC3	ORGANIC REACTION MECHANISM-II	6	4
Objectives of the course		 To understand the oxidation and reduction for the mechanism involved in reactions with evidences. To understand the applications of synthetica To correlate the reactivity between compounds. To design synthetic routes for s reactions. 	reactions. various type Ily important aliphatic ar ynthetically	s of organic t reagents. ad aromatic used organic
Course Outline	UNI and I bond base and – Pr and radid aron aron UNI elect elim oxid ferri diox grou bond oxid (Swo dicy reac Tria Hon	T-I: Elimination and Free Radical Reaction E1cB mechanisms. Syn- and anti-eliminations. d:Hoffmann and Saytzeff rules. Reactivity: Effe s, leaving group and medium. Stereochemistry of cyclic systems, pyrolytic elimination. Long lived oduction of radicals by thermal and photochem stability of radicals, characteristics of free ra- cal, reactions of radicals; polymerization, natic substitutions, rearrangements. Reactivity: natic substitutions, rearrangements. Reactivity: natic substitutions, rearrangements. Reactivity: natic substitutions, rearrangements. Reaction rontransfer, hydride transfer, hydrogen transfer ination, oxidative and reductive coupling ra- ation reactions: Dehydrogenation by quinor cyanide, mercuric acetate lead tetraacetate, p- ide, osmium tetroxide, oxidation of saturation s, alcohols, halides and amines. Reactions in ls - cleavage of double bonds, oxidative ation, oxidation by chromium trioxide-pyridine ern oxidation) and Corey-Kim oxidation, clohexyl carbodiimide (DMSO-DCCD). M tions: Wolff- Kishner, Clemmenson, Rose lkyl and triphenyltin hydrides, McFady nogeneous hydrogenation, Hydroboration with openation prosent Plane reduction	Is: Mechanis Orientation of ect of substra- of eliminatio d and short-li- nical reaction dical reaction addition, ha Reactivity of al, effect of so is: Mechaniar, displacement eactions. Mo- nes, seleniu ermanganate ted hydroca volving clear decarboxyla c, DMSO-Ox dimethyl echanism of nmund, red ven-Steven's cyclic system	ims: E2, E1, of the double te, attacking ns in acyclic ived radicals as, Detection ons and free alogenations, on aliphatic, olvent. sms: Direct ent, addition- echanism of m dioxides, , manganese rbons, alkyl vage of C-C tion, allylic alyl chloride sulphoxide- of reduction uction with reduction, ns, MPV and

Venkataraman, Benzilic acid and Wolff rearrangements. Schmidt, Lossen Baeyer-Villiger oxidation and Dakin rearrangements. Favorskii, Quasi- Favorskii, Stevens, [1,2]-Wittig and [2,3]-Wittig rearrangements. Fries and Photo Fries rearrangement. Claisen, Cope, oxy-Cope rearrangements. Payne
Baeyer-Villiger oxidation and Dakin rearrangements. Favorskii, Quasi- Favorskii, Stevens, [1,2]-Wittig and [2,3]-Wittig rearrangements. Fries and Photo Fries rearrangement. Claisen, Cope, oxy-Cope rearrangements. Payne
Favorskii, Stevens, [1,2]-Wittig and [2,3]-Wittig rearrangements. Fries and Photo Fries rearrangement. Claisen, Cope, oxy-Cope rearrangements. Payne
Photo Fries rearrangement. Claisen, Cope, oxy-Cope rearrangements. Payne
and Brook rearrangement
UNIT-IV: Addition to Carbon Multiple Bonds: Mechanisms: (a) Addition
to carbon-carbon multiple bonds- Addition reactions involving electrophiles
nucleophiles, free radicals, carbenes and cyclic mechanisms-Orientation and
reactivity, hydrogenation of double and triple bonds, Michael feaction addition of ovvgen and Nitrogen: (b) Addition to carbon betero atom
multiple bonds: Mannich reaction acids esters nitrites addition of Grignard
reagents, Wittig reaction, Prins reaction. Stereochemical aspects of addition
reactions. Addition to Carbon-Hetero atom Multiplebonds: Addition of
Grignard reagents, organozinc and organolithium reagents to carbonyl and
unsaturated carbonyl compounds. Mechanism of condensation reactions
involving enolates – Stobbe reactions. Hydrolysis of esters and amides
UNIT-V: Reagents and Modern Synthetic Reactions: lithium d
isopropylamide (LDA). Azobisisobutyronitrile (AIBN). Sodiu
cyanoborohydride (NaBH ₃ CN), <i>meta</i> -Chloroperbenzoic acid (m-CPBA
Dimethyl aminiopyridine (DMAP), n-Bu ₃ SnH, Triethylamine (TEA
Diazobicyclo[5.4.0]undec-7-ene (DBU), Diethylazodicarboxylate (DEAD
Trifluoroacetic acid (TFA), Tetramethyl piperiridin-1-oxyl (TEMPO), TiCl
NalO ₄ , OsO ₄ , Pyridinium chlorochromate (PCC), Pyridinium dichromate (PDC
Suzuki coupling, Heck reaction, Baylis-Hillman reaction. Phase transfe
catalysis, crown ethers. DDQ, 1,3-dithane, birch reduction
Recommended 1 J. March and M. Smith Advanced Organic Chamistry. 5th ad
Text I. J. Match and W. Shifti, <i>Auvanced Organic Chemistry</i> , 5th ed., John-Wiley and Sons 2001.
2. E. S. Gould, <i>Mechanism and Structure in Organic Chemistry</i> , Holt,
Rinehart and Winston Inc., 1959.
3. P. S. Kalsi, Stereochemistry of carbon compounds, 8 th edn, New Age
International Publishers, 2015.
4. P. Y.Bruice, Organic Chemistry, / "edn., Prentice Hall, 2013. 5. P. T. Morrison, P. N. Boyd, S. K. Bhattachariae Organic Chemistry 7 th
edn. Pearson Education, 2010
Reference 1. S. H. Pine, <i>Organic Chemistry</i> , 5 th edn, McGraw Hill
Books International Editionn, 1987.
2. L. F. Fieser and M. Fieser, Organic Chemistry, Asia Publishing
House, Bombay, 2000.
3. E.S. Gould, <i>Mechanism and Structure in Organic Chemistry</i> , Holt, Rinebart and Winston Inc. 1959
4. T. L. Gilchrist. <i>Heterocyclic Chemistry</i> . Longman Press. 1989.

	5. J. A. Joule and K. Mills, <i>Heterocyclic Chemistry</i> , 4 th ed., John-Wiley, 2010.
Website and	1. https://sites.google.com/site/chemistryebookscollection02/home/organic-
e-learning	<u>chemistry/organic</u>
source	2. <u>https://www.organic-chemistry.org/</u>

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	To recall the basic principles of aromaticity of organic and heterocyclic compounds	K1
CO2	To understand the mechanism of various types of organic reactions.	K2, K3
CO3	To predict the suitable reagents for the conversion of selective organic compounds.	K3
CO4	To correlate the principles of substitution, elimination, and addition reactions.	K4
CO5	To design new routes to synthesis organic compounds.	K6

Cognitive Level:K1 - Remember; K2 - Understanding; K3 - Apply; K4 - Analyze;

K5 – Evaluate; K6 – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	М	S	S
CO 2	М	S	S	S	S	М	S
CO 3	S	S	Μ	S	S	S	S
CO 4	М	S	S	S	S	М	S
CO 5	М	S	М	S	S	М	S
	1	1				1	1

S – Strong

M – Medium

L – Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3
Semester	· Course Code		Course Title	Hours of Teaching / Cycle	No. of Credits		
--------------------	----------------------------	---	--	---	--	--	--
П	23P2CH	[C4	PHYSICAL CHEMISTRY-I	5	4		
Objectiv course	Dbjectives of the ourse		To recall the fundamentals of thermodynamics and the composition ofpartial molar quantities. To understand the classical and statistical approach of the functions To compare the significance of Maxwell-Boltzman, Fermi-Dirac and Bose-Einstein To correlate the theories of reaction rates for the evaluation of thermodynamic parameters. To study the mechanism and kinetics of reactions.				
Outline		Parti binar Ther grapi press mixt mixt vapo UNI therr distr ense Eins evalu mon func Stati entro equi di at and I	T-I Classical Thermodynamics: al molar properties-Chemical potential, Gibb's- Duhem equation- ry and ternary systems. Determination of partial molar quantities. modynamics of real gases - Fugacity- determination of fugacity by hical and equation of state methods-dependence of temperature, sure and composition. Thermodynamics of ideal and non-ideal binary ures, Duhem - Margulus equation applications of ideal and non-ideal ures. Activity and activity coefficients-standard states - determination- ur pressure, EMF and freezing point methods. T-II: Statistical thermodynamics: Introduction of statistical nodynamics concepts of thermodynamic and mathematical probabilities- ibution of distinguishable and non-distinguishable particles. Assemblies, mbles, canonical particles. Maxwell -Boltzmann, Fermi Dirac & Bose- tein Statistics- comparison and applications. Partition functions- uation of translational, vibrational and rotational partition functions toos in terms of partition functions-calculation of equilibrium constants. stical approach to Thermodynamic properties: pressure, internal energy, py, enthalpy, Gibb's function, Helmholtz function residual entropy, librium constants and equipartition principle. Heat capacity of monoand comic gases-ortho and para hydrogen. Heat capacity of solids- Einstein				
		UNI and flow Onsa effec	T-III: Irreversible Thermodynamics: Theorenergy entropy production in open systems and flux concepts. Onsager theory ager reciprocal relationships. Electro kineticts-Application of irreversible thermodynamic	ries of conserv by heat, matte -validity and c and thermo s to biological	ation ofmass r and current verification- mechanical systems.		

	UNIT-IV: Kinetics of Reactions: Theories of reactions-effect of temperature on reaction rates, collision theory of reaction rates, Unimolecular reactions -Lindeman and Christiansen hypothesis- molecular beams, collision cross sections, effectiveness of collisions, Potential energy surfaces. Transition state theory-evaluation of thermodynamic parameters of activation-applications of ARRT to reactions between atoms and molecules, time and true order-kinetic parameter evaluation. Factors determine the reaction rates in solution - primary salt effect and secondary salt effect, Homogeneous catalysis- acid- base catalysis-mechanism of acid base catalyzed reactions- Bronsted catalysis law, enzyme catalysis-Michelis-Menton catalysis.
	UNIT-V: Kinetics of complex and fast reactions: Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-chain length, kinetics of $H_2 - Cl_2 \& H_2 - Br_2$ reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods- temperature and pressure jump methods electric and magnetic field jump methods - stopped flow flash photolysis methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic, anionic polymerization - Polycondensation.
Recommended Text	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition,S.L.N.Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. BenjaminPublishers, California, 1972. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of chemical transformation, Macmillan India Ltd, Reprint - 2011.
Reference Books	 D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas Publishing, Pvt. Ltd., New Delhi, 1990. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry, Macmillan Publishers, New York, 1974 K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom Press, 1996. Gurdeep Raj, Phase rule, Goel Publishing House, 2011.
Website and e-learning	1. <u>https://nptel.ac.in/courses/104/103/104103112/</u> 2. <u>https://bit.ly/3tL3GdN</u>
source	

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	To explain the classical and statistical concepts of thermodynamics.	K2
CO2	To compare and correlate the thermodynamic concepts to study the	K1
	kinetics of chemicalreactions.	
CO3	To discuss the various thermodynamic and kinetic determination.	K4
CO4	To evaluate the thermodynamic methods for real gases ad mixtures.	K5
CO5	To compare the theories of reactions rates and fast reactions.	K6

Cognitive Level:K1 - Remember; K2 - Understanding; K3 - Apply; K4 - Analyze;

K5 – Evaluate; **K6** – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	Μ	S	S
CO 2	Μ	S	S	S	S	Μ	S
CO 3	S	S	Μ	S	S	S	S
CO 4	М	S	S	S	S	Μ	S
CO 5	Μ	S	Μ	S	S	Μ	S

S – Strong

M – Medium

L – Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	Course Code	Course Title	Hours of Teaching / Cycle	No. of Credits
П	23P2CHCP2	INORGANIC CHEMISTRY PRACTICAL	5	4
Objectiv course	es of the	 To understand and enhance the visual obset toolfor the quantitative estimation of ions. To recall the principle and theory in preparin To train the students for improving their skill ofion accurately present in the solution To estimate metal ions, present in the g without using instruments. To determine the amount of ions, prese accurately 	ervation as a g standard so in estimating iven solution nt in a bin	in analytical olutions. g the amount n accurately ary mixture
Course Outline	UN cat tes Gr Gr Gr Gr Gr	IT-I: Analysis of mixture of cations: AnalysisIT-I: Analysis of mixture of cations: AnalysisIter on the constraining two common cations and two rated.Iter oup-I: W, Tl and Pb.Iter oup-II: Se, Te, Mo, Cu, Bi and Cd.Iter oup-III: Tl, Ce, Th, Zr, V, Cr, Fe, Ti and U.Iter oup-IV: Zn, Ni, Co and Mn.Iter oup-V: Ca, Ba and Sr.Group-VI: Li and	sis of a mix are cations. (Mg.	ture of four Cations to be
	UN con a. 1 b. 1 c. 1 d. 1 e. 1 f. F g. 1 Pre UN 1. 1 2. 1 3. 1 4. 1 5. 1	IT-II: Preparation of metal complexes: Preparation of tristhioureacopper(I)sulphate Preparation of potassium trioxalate chromate(III) Preparation of tetramminecopper(II) sulphate Preparation of Reineck's salt Preparation of Reineck's salt Preparation of hexathioureacopper(I) chloridedihy reparation of <i>cis</i> -Potassium tri oxalate diaquachro Preparation of sodium trioxalatoferrate(III) paration of hexathiourealead(II) nitrate IT-III: Complexometric Titration: Estimation of zinc, nickel, magnesium, and calciu Estimation of mixture of metal ions-pH contro demasking agents. Determination of manganese in the presence of iro.	aration of ind aration of ind addrate omate(III) m. ol, masking oH control). on.	and

M.Sc. Chemistry

Recommended	1. A. JeyaRajendran, Microanalytical Techniques in Chemistry:
Text	Inorganic Qualitative Analysis, United global publishers, 2021.
	2. V. V. Ramanujam, Inorganic Semimicro Qualitative Analysis; 3rded., The
	National Publishing Company, Chennai, 1974.
	3. Vogel's Text book of Inorganic Qualitative Analysis, 4thed., ELBS,
	London.
Reference	1. G. Pass, and H. Sutcliffe, Practical Inorganic Chemistry; ChapmanHall,
Books	1965.
	2. W. G. Palmer, Experimental <i>Inorganic Chemistry</i> ; Cambridge University Press, 1954.

Course Outcomes (for Mapping with POs and PSOs) On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	To identify the anions and cations present in a mixture of salts.	K1
CO2	To apply the principles of semi micro qualitative analysis to categorize acid radicals andbasic radicals.	K2
CO3	To acquire the qualitative analytical skills by selecting suitable confirmatory tests and spot tests.	K4
CO4	To choose the appropriate chemical reagents for the detection of anions and cations.	K5
CO5	To synthesize coordination compounds in good quality.	K6

Cognitive Level:K1 - Remember; K2 - Understanding; K3 - Apply; K4 - Analyze;

K5 – Evaluate; **K6** – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	Μ	S	S
CO 2	Μ	S	S	S	S	Μ	S
CO 3	S	S	Μ	S	S	S	S
CO 4	Μ	S	S	S	S	Μ	S
CO 5	Μ	S	Μ	S	S	Μ	S
				N A1*			

S – Strong

M – Medium

L – Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	Course Code	Course Title	Hours of Teachin g / Cycle	No. of Credits
п	23P2CHEL3A	Major Elective - III MEDICINAL CHEMISTRY	5	3
Objectiv course Course	es of the UN	 To study the chemistry behind the developm materials. To gain knowledge on mechanism and action of To understand the need of antibiotics and usag To familiarize with the mode of action of treatmentof diabetes. To identify and apply the action of various ant IT-I: Introduction to receptors: Introduction 	nent of ph of drugs. e of drugs. of diabetic <u>ibiotics.</u> on, target	armaceutical agents and s, Agonist,
Outline	ant – ph	agonist, partial agonist. Receptors, Receptor types, receptor interaction, Drug synergism, I vsicochemical factors influencing drug action.	, Theories o Drug resi	of Drug istance,
	UN cla per cer	IT-II: Antibiotics: Introduction, Targets of ssification of antibiotics, enzyme-based mechani icllins and tetracyclins, clinical application halosporin. Current trends in antibiotic therapy.	of antibiot sm of acti- tion of	tics action, on, SAR of penicillins,
	UN can cla act UN mo trio tho ana an coo Ph	IT-III: Antihypertensive agents and diured diovascular agents, introduction to hyperten- ssification of antihypertensive agents, classification on of diuretics, Furosemide, Hydrochlorothiazide, IT-IV: Anesthetics: Ideal anaesthetic agent-class de of action, General Anaesthetics – volatile ether hloro ethylene – structure, advantages and disac pental sodium- properties, structure, advantage a esthetics – requisties, cocainie – structure and ac I Disinfectants: Distinction between disinfectants fficient. Psychedelic drugs: Lysergic acid armacological action of LSD – mechanism of ac	tics: Class sion, etiol and mecha <u>Amiloride.</u> ssification a , vinyl ethe lvantages, n nd disadvan lvantages. and antisep diethylamic	ification of ogy, types, nism of according to r, halothane, non-volatile- ntages, local Antiseptics vtics, phenol- le (LSD) – apeutic uses
	uN Int act pho Int cla Ch	IT-V: Analgesics, Antipyretics and Anti-in roduction, Mechanism of inflammation, classification and paracetamol, Ibuprofen, Diclofenac, na enylbutazone and meperidine. Medicinal Chemistry roduction, Types of diabetics, Drugs used for the ssification, Mechanism of action, Treatment emistry of insulin, sulfonyl urea.	and therape nflammato tion and me proxen, inc of Antidiat he treatmen of diabeti	ry Drugs: echanism of domethacin, betic Agents t, chemical c mellitus.

Recommended	1. Wilson and Gisvold's textbook of organic medicinal and						
Text	pharmaceutical chemistry,						
	2. Wilson, Charles Owens: Beale, John Marlowe; Block, John H,						
	Lipincott William, 12th edition, 2011.						
	3. Graham L. Patrick, An Introduction to Medicinal Chemistry, 5th						
	edition. Oxford University Press, 2013. Javashree Ghosh, A text book						
	of Pharmaceutical Chemistry, S. Chand and Co. Ltd, 1999,1999 edn.						
	4. O. LeRoy, Natural and synthetic organic medicinal compounds,						
	Ealemi, 1976.						
	5. S. Ashutosh Kar, Medicinal Chemistry, Wiley Eastern Limited, New						
	Delhi, 1993, New edn.						
Reference	1. Foye's Princles of Medicinal Chemistry, Lipincott Williams, Seventh						
Books	Edition, 2012						
	2. Burger's Medicinal Chemistry, Drug Discovery and Development,						
	Donald J. Abraham, David P. Rotella, Alfred Burger, Academic press,						
	2010.						
	3. Wilson and Gisvold's Textbook of Organic Medicinal and						
	Pharmaceutical Chemistry, John M. Beale Jr and John M. Block,						
	wolters Kluwer, 2011, 12 edn.						
	4. P. Parimoo, A Textbook of Medical Chemistry, New Delhi: CBS Publishers.1995.						
	5. S. Ramakrishnan, K. G. Prasannan and R. Rajan, Textbook of						
	Medical Biochemistry, Hyderabad: Orient Longman. 3 rd edition,						
	2001.						
Website and	1. https://www.ncbi.nlm.nih.gov/books/NBK482447/						
e-learning	2. <u>https://training.seer.cancer.gov/treatment/chemotherapy/types.html</u>						
source	3. https://www.classcentral.com/course/swayam-medicinal-chemistry-						
	12908						

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level		
CO1	Predict a drugs properties based on its structure.	K2		
CO2	Describe the factors that affect its absorption, distribution, metabolism, and excretion, and hence the considerations to be made in drug design.	К3		
CO3	Explain the relationship between drug's chemical structure and its therapeutic properties.			
CO4	Designed to give the knowledge of different theories of drug actions at molecularlevel.	К5		
CO5	To identify different targets for the development of new drugs for the treatment of infectious and GIT.	K6		

Cognitive Level:K1 - Remember; K2 - Understanding; K3 - Apply; K4 - Analyze;

K5 – Evaluate; **K6** – Create

M.Sc. Chemistry

	PO1	PO2	PO3	PO4	PO5	PO6	PO7		
CO 1	S	S	S	S	М	S	S		
CO 2	М	S	S	S	S	М	S		
CO 3	S	S	Μ	S	S	S	S		
CO 4	М	S	S	S	S	М	S		
CO 5	М	S	Μ	S	S	Μ	S		
M. Modium									

CO-PO Mapping (Course Articulation Matrix)

S – Strong

M – Medium

L – Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	Course Code	Course Title	Hours of Teachin g / Cycle	No. of Credits				
II	23P2CHEL3B	Major Elective - III GREEN CHEMISTRY	5	3				
Objective ofthe course	es • To • To p • Prop Petro • Prop prod • Prop	discuss the principles of gree propose green solutions for chemical energy stora- pose green solutions for industrial production ochemicals. pose solutions for pollution prevention in Indus luction, Automotive industry and Shipping indust pose green solutions for industrial production of S	n chem ge and conv on of Petr trial chemic ries. Surfactants,	istry. version. roleum and cal and fuel Organic and				
Course Outline	UNIT-I: Info of Green of chemistry of UNIT-II: Of Green cherr dimethyl ca of prepara properties, scCO ₂ . Greet UNIT-III: catalysts, F chloride, po UNIT-IV: peroxide, formation, synthesis.	ganic chemicals. troduction- Need for Green Chemistry. Goals of Gree Chemistry. Chemical accidents, terminologies rganizations and Twelve principles of Green Chemis Choice of starting materials, reagents, catalysts nistry in day today life. Designing green syr rbonate. Green solvents: Water, Ionic liquids- cr tion, effect on organic reaction. Supercri- advantages, drawbacks and a few examples en synthesis-adipic acid and catechol. Environmental pollution, Green Catalysis-Ac Basic catalysts, Polymer supported catalysts-F lymeric super acid catalysts, Poly supported phot Phase transfer catalysis in green synthesis-ox crown ethers-esterification, sapo Elimination reaction, Displacement reaction. A	en Chemistry , Internation try with example and solven and solven iteria, gene iteria, gene itical carbo of organic id catalysts oly styren osensitizers idation usin polication, applications	y.Limitations/ onall green nples. nts in detail, en reagents: ral methods on dioxide- reactions in s, Oxidation e aluminum s. ng hydrogen anhydride s in organic				
	UNIT-V: Instrumenta Application	UNIT-V: Micro wave induced green synthesis-Introduction, Instrumentation, Principle and applications. Sonochemistry – Instrumentation, Cavitation theory - Ultra sound assisted green synthesis and Applications						
Recomm ded Text	en 1. Ahluwal Anamala 2. W. L. M Chemic 3. J. M. S Synthes 4. V. K. A Technic 5. A. K. I	lia, V.K. and Kidwai, M.R. New Trends in Green aya Publishers, 2005. McCabe, J.C. Smith and P. Harriott, Unit Opera al Engineering, 7 th edition, McGraw-Hill, NewDel Swan and D. St. C. Black, Organometallics in Sis, Chapman Hall, 1974. Ahluwalia and R. Aggarwal, Organic Synthesis: ques, Narosa Publishing House, New Delhi, 2001. De, Environmental Chemistry, New Age Publi	Chemistry, ations of lhi,2005. Organic Special cations, 20	17.				

Reference	1. Anastas, P.T. and Warner, J.K. Oxford Green Chemistry -Theory and Practical,
Books	University Press, 1998
	2. Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker, 2001
	3. Cann, M.C. and Connely, M.E. Real-World Cases in Green Chemistry, American
	Chemical Society, Washington, 2000
	4. Ryan, M.A. and Tinnesand, M., Introduction to Green Chemistry, American
	Chemical Society Washington, 2002.
	5. Chandrakanta Bandyopadhyay, An Insight into Green Chemistry, Books and
	Allied (P) Ltd, 2019.
Website	1. https://www.organic-chemistry.org/
and	2. https://www.studyorgo.com/summary.php
e-learning	
source	

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	To recall the basic chemical techniques used in conventional industrial preparations and in green innovations.	K1
CO2	To understand the various techniques used in chemical industries and in laboratory.	K2
CO3	To compare the advantages of organic reactions assisted by renewable energy sourcesand non-renewable energy sources.	К3
CO4	To apply the principles of PTC, ionic liquid, microwave and ultrasonic assisted organicsynthesis.	K4
CO5	To design and synthesize new organic compounds by green methods.	K5

Cognitive Level:K1 - Remember; **K2** - Understanding; **K3** - Apply; **K4** - Analyze; **K5** – Evaluate; **K6** – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	Μ	S	S
CO 2	Μ	S	S	S	S	Μ	S
CO 3	S	S	Μ	S	S	S	S
CO 4	Μ	S	S	S	S	Μ	S
CO 5	Μ	S	Μ	S	S	Μ	S

S – Strong

M – Medium

Level of Correlation between PSO's and CO's									
CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7		
CO1	3	3	3	3	3	3	3		
CO2	3	3	3	3	3	3	3		
CO3	3	3	3	3	3	3	3		
CO4	3	3	3	3	3	3	3		
CO5	3	3	3	3	3	3	3		

Semester	Course Code	Course Title	Hours of Teaching / Cycle	No. of Credits				
II	23P2CHEL4A	Major Elective – IV BIO-INORGANIC CHEMISTRY	5	3				
Objectiv ofthe course	es Ta Ta Ta Ta Ta	 To understand the role of trace elements. To understand the biological significance of iron, sulpur. To study the toxicity of metals in medicines. To have knowledge on diagnostic agents. To discuss on various metalloenzymes properties. 						
Outline	Ferritin, 7 signalling carbonic superoxid Vitamin-I	UNIT-I: Essential trace elements: Selective transport and storage of metal ions Ferritin, Transferrin and sidorphores; Sodium and potassium transport, Calcium signalling proteins. Metalloenzymes: Zinc enzymes– carboxypeptidase and carbonic anhydrase. Iron enzymes–catalase, peroxidase. Copper enzymes – superoxide dismutase, Plast ocyanin, Ceruloplasmin, Tyrosinase. Coenzymes Vitamin P12 coenzymes						
	UNIT-II: Structure Hemoglo b and c hemocyan classificat	UNIT-II: Transport Proteins: Oxygen carriers -Hemoglobin and myoglobin - Structure and oxygenation Bohr Effect. Binding of CO, NO,CN– to Myoglobin and Hemoglobin. Biological redox system: Cytochromes-Classification, cytochrome a b and c. Cytochrome P-450. Non-heme oxygen carriers-Hemerythrin and hemocyanin. Iron-sulphur proteins- Rubredoxin and Ferredoxin- Structure and						
UNIT-III: Nitrogen fixation-Introduction, types of nitrogen microorganisms. Nitrogenase enzyme - Metal clusters in nitrogenase- property - Dinitrogen complexes transition metal complexes of dinitr nitrogen fixation via nitride formation and reduction of dinitrogen to am Photosynthesis: photosystem-I and photosystem- II-chlorophylls structu function								
UNIT-IV: Metals in medicine: Metal Toxicity of Hg, Cd, Zn, Pb, Therapeutic Compounds: Vanadium-Based Diabetes Drugs; Pl Containing Anticancer Agents.Chelation therapy; Cancer treatment. Dia Agents: Technetium Imaging Agents; Gadolinium MRI Imaging temperature and critical magnetic Field.								
	UNIT-V: classificat catalysis. reactions.	Enzymes -Introduction and propertie ion. Enzyme kinetics, free energy of activ Michelis - Menton equation - Effect of pH Factors contributing to the efficiency of enzym	s -nomencl ation and the , temperature ne.	ature and e effects of on enzyme				

D	1 Williams D.D. Later detion to Dising an ania share inter-							
Recommend	1. williams, D.K. –Introduction to Bioinorganic chemistry.							
edText	2. F.M. Fiabre and D.R. Williams– The Principles of Bioinorganic							
	Chemistry, RoyolSoceity of Chemistry, Monograph for Teachers-31							
	3. K.F. Purcell and Kotz., Inorganic chemistry, WB Saunders Co., USA.							
	4. G.N. Mugherjea and Arabinda Das, Elements of BioinorganicChemistry - 1993.							
	5. R. Gopalan, V. Ramalingam, Concise Coordination Chemistry,							
	S. Chand, 2001 .							
Reference	1. M.Satake and Y.Mido, Bioinorganic Chemistry- Discovery Publishing House,							
Books	New Delhi (1996)							
	2. M.N. Hughes, 1982, The Inorganic Chemistry of Biological processes, II Edition,							
	Wiley London.							
	3. R. W. Hay, Bio Inorganic Chemistry, Ellis Horwood, 1987.							
	4. R. M. Roat-Malone, Bio Inorganic Chemistry, John Wiley, 2002.							
	5. T. M. Loehr, Iron carriers and Iron proteins, VCH, 1989.							
Website and	2. https://www.pdfdrive.com/instant-notes-in-inorganic-chemistry- the-							
e-learning	instant-notes-chemistry-series-d162097454.html							
source	3. https://www.pdfdrive.com/shriver-and-atkins-inorganic-chemistry- 5th-							
	edition-d161563417.html							

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	The students will be able to analyses trace elements.	K1
CO2	Students will be able to explain the biological redox systems.	K2
CO3	Students will gain skill in analyzing the toxicity in metals.	K4
CO4	Students will have experience in diagnosis.	K5
CO5	Learn about the nitrogen fixation and photosynthetic mechanism.	K6

Cognitive Level:K1 - Remember; K2 - Understanding; K3 - Apply; K4 - Analyze;

K5 – Evaluate; K6 – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	Μ	S	S
CO 2	Μ	S	S	S	S	Μ	S
CO 3	S	S	Μ	S	S	S	S
CO 4	Μ	S	S	S	S	Μ	S
CO 5	Μ	S	Μ	S	S	Μ	S

S – Strong

M – Medium

L – Low

Level of Correlation between PSO's and CO's DCOC

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	Subject code	Title of the paper	Hours of Teaching/ Week	No. of Credits						
Π	20P2CHEL4B	Major Elective – IV Cheminformatics	5	3						
Objectives of the cours	 Students learn about the information of cheminformatics and its application Students know about the Representation of Molecules and Chemical Reactions Students identify about the Searching Chemical Structure Students understand about the Computer Assisted Virtual screening design Students learn about the Application of Cheminformatics in Drug Design. 									
Course Outline	Unit I Introduction to Cheminformatics: Introduction to cheminformatics, History and Evolution of cheminformatics, Use of cheminformatics, Prospects of cheminformatics, Molecular Modeling and Structure Elucidation Unit II Representation of Molecules and Chemical Reactions: Nomenclature; Different types of Notations; SMILES coding; Matrix Representations; Structure of Molfiles and Sdfiles; Libraries and toolkits; Different electronic effects; Reaction									
	Unit III Searching Chemical Structure: Full structure search; sub structure search; basic ideas; similarity search; Three dimensional search methods; Basics of Computation of Physical and Chemical Data and structure descriptors; Data visualization.									
	Computer Assisted Virtual screening design : Structure Based Virtual Screening- Protein Ligand Docking, Scoring Functions for Protein Ligand docking, Practical aspects of structure based Virtual Screening; Prediction of ADMET Properties, 2 D and 3D data searching, Chemical databases, Role of computers in Chemical Research.									
	Unit V Self Study Application of Cheminformatics in Drug Design: Quantitative Structure- Property Relations; Descriptor Analysis; Computer Assisted Structure elucidations; Target Identification and Validation; Lead Finding and Optimization; Analysis of HTS data; Design of Combinatorial Libraries; LigandBased and Structure Based Drug design.									
Recommen edText	d 1 Andrew R. Academic Publ	Leach, Valerie J. Gillet, Cluwer , isher, Netherlands, 2003	, Introduction to Ch	eminformatics,						

Reference	1. Lisa B. English (Editor), Combinatorial Library Methods and Protocols, Humana
Books	Press Inc, Volume:201, 2002
	2. Frank Jensen, Introduction to Computational Chemistry, Wiley Publisher, Second
	Edition, 2006

On the successful completion of the course, students will be able to

CO Number	CO Statement					
CO1	Understand the Cheminformatics	K2				
CO2	understand the representation of Molecules and Chemical Reactions	K2				
CO3	Analyse the Searching Chemical Structure	K4				
CO4	tounderstand about theComputer Assisted Virtual screening design	K2				
CO5	To evaluate the Cheminformatics tools in Drug Design	K5				

Cognitive Level:K1 - Remember; K2 - Understanding; K3 - Apply; K4 - Analyze;

K5 – Evaluate; **K6** – Create

CO-PO Mapping(Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	S	S	S	S	Μ	S	S
CO2	М	S	S	S	S	Μ	S
CO3	S	S	Μ	S	S	S	S
CO4	Μ	S	S	S	S	Μ	S
CO5	Μ	S	Μ	S	S	Μ	S

S– Strong

M– Medium

L – Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	Course C	Code	Course Title	Hours of Teaching / Cycle	No. of Credits				
II	23P2CHS	SEC2	Skill Enhancement Course - Domestic Chemicals Preparation	2	2				
Objectiv course	es ofthe	The m	 he main objectives of this course are to: Know about classification of food and their functions Understand the Composition of milk Know the Preparation of soap and detergents Know the Classification of polymers Gain practical knowledge on Preparation of domestic products 						
Course OutlineUNIT-I: Food: Nutritional classification of food (carbohydrate, protein and amino acids, lipids, vitamins, minerals and water) and the functions in the body – examples for each class - rancidity of oil – an oxidants.Milk: composition– some commercial milk products Soap: Definition, Preparation of soap by cold process and hot process properties of soap.Detergent: Types, preparation, comparison of the properties of detergen with soap.Preparation of some food products: Tooth paste, Jam & Jelly, Garat masala powder, Tomato paste, tomato sauce and tomato soup									
		 UNIT-II: Polymers: Classification (based on physical property, composition & reaction mode of polymerization). Adhesive: Introduction, advantages of adhesive, limitation of adhesive, bonding mechanism of adhesive action. Preparation of some domestic products: Nail polish, hand cream, perfumes, rose water, sandal wood powder, shampoo, Mosquito coil, candle, chalk and ink (Formulation and Procedure). (Note: Chemical structures/chemical equation s are not needed in any part) 							
Recomm Text Referenc Books	ended e	1. Baş 2. Siv	gavathi Sundari K, Applied Chemistry, MJP publi vasankar B, Food Processing and Preservation	ishers, Chenna , PHI Learni	ai (2006). ing Private				
Text Referenc Books	e	2. Siv Limit	vasankar B, Food Processing and Preservation ed, New Delhi, (2010)	, PHI Learni	ing Priv				

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Students should able to learn about the classification of food and their	K1
	functions	
CO2	able to understand the Composition of milk	K2
CO3	able to know the Preparation of soap and detergents	K3
CO4	able to know the Classification of polymers	K4
CO 5	Should able to gain practical knowledge on Preparation of domestic products	K5

Cognitive Level: K1 - Remember; K2 - Understanding; K3 - Apply; K4 - Analyze;

K5 – Evaluate; **K6** – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	Μ	S	S
CO 2	М	S	S	S	S	Μ	S
CO 3	S	S	Μ	S	S	S	S
CO 4	М	S	S	S	S	Μ	S
CO 5	Μ	S	Μ	S	S	Μ	S

S – Strong

M – Medium

L – Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Ability Enhancement Com	Hours of Teaching / Cycle	No. of Credits
II 23P2CHAECC2 Course -	ompulsory 2	2

Nature of the course

Employability Oriented	 Relevant to Local need	 Addresses Gender	
		Sensitization	
Entrepreneurship	 Relevant to national	 Addresses Environment	
Oriented	need	and Sustainability	
Skill development	 Relevant to regional	 Addresses Human	
Oriented	need	Values	
	Relevant to Global	 Addresses Professional	
	development need	Ethics	

Course Objectives

The main objectives of this course are to:

- 1. To facilitate computer-assisted multi-media instruction enabling individualized and independent language learning
- 2. To sensitize students to the nuances of English speech sounds, word accent, intonation and rhythm
- 3. To bring about a consistent accent and intelligibility in students' pronunciation of English by providing an opportunity for practice in speaking
- 4. To improve the fluency of students in spoken English and neutralize their mother tongue influence
- 5. To train students to use language appropriately for public speaking and Interviews

Unit – I LSRW

Listening Skills: Introduction to Phonetics – Speech Sounds – Vowels and Consonants, Listen to News, poem, songs, Motivational speech, stories, movies, interesting facts, sign of zodiac, dialogues, idioms, dictation – Common errors

Speaking Skills: Stress, Intonation, Homophone, Silent Letters, Greetings, Small Talk, Telephone English, Role Play, Tongue Twisters, Welcome Speech & Vote of Thanks, Compering, Declamation, Sing Along, Brain Storming, JAM (Just A Minute)

Reading Skills: Reading test, Skit, Proof Reading, Oral Reading Fluency, Reading Stories,

Writing Skills: learn English Grammar through Tamil Translation, Reading Comprehension-short stories, informational passages, Advanced Critical reading – Intelligence Augmentation, Dialogues, Sentence Completion, Word Definition, Classic Analogy Bridges, Sentence Analogies, Same Sound, Divided Syllables, Finish the Story, Answering the questions, Practical Writing, Making a formal Argument, Free Writing, Using Precise Language

Unit – II Career and Soft Skills

Career Skills: Body Language (BL) : BL Interview, BL Model, BL Tips, Business English, Communication skills, GD, Interview Skills Soft Skills: Assertiveness, Creativity, Critical Thinking and Problem Solving, Empathy, Enthusiasm and attitude, Goal Setting, Great interviews, Negotiation Skills, Personality Development, Professionalism, Self Esteem, Stress Management, Team Building, Time

Management, Motivation and Attitude, Interpersonal relationship and skills, Networking,

Reference:

- 1. Materials prepared by the Department of English for Writing skills
- 2. Soft Skills Know Yourself and know the world, Dr.K.Alex, Chand Publications, 3rd revised edition 2014
- 3. Software : Express Pro Lite

The Language Lab focuses on the production and practice of sounds of language and familiarizes the students with the use of English in everyday situations both in formal and informal contexts.

Learning Outcomes:

Students will be able to attain

1. Better understanding of nuances of English language through audio- visual experience and group activities

2. Neutralization of accent for intelligibility

3. Speaking skills with clarity and confidence which in turn enhances their employability skills

Minimum Requirement of infrastructural facilities for Language Lab:

1. Computer Assisted Language Learning (CALL) Lab:

The Computer Assisted Language Learning Lab has to accommodate 40 students with 40 systems, with one Master Console, LAN facility and English language learning software for self-study by students.

System Requirement (Hardware component):

Computer network with LAN facility (minimum 40 systems with multimedia) with the following specifications:

i) Computers with Suitable Configuration

ii)High Fidelity Headphones

2. Interactive Communication Skills (ICS) Lab:

The Interactive Communication Skills Lab: A Spacious room with movable chairs and audiovisual aids with a Public-Address System, a LCD and a projector etc

Semester	Cour	se Code	Course Title	Hours of Teaching / Cycle	No. of Credits
ш	23P	3CHC5	ORGANIC SYNTHESIS AND PHOTOCHEMISTRY	6	4
Objective ofthe cou	es irse	 To un presen To st organi To ap succes To lea To gai 	nderstand the molecular complexity of carbo ce of functional groups and their relative position udy various synthetically important reagent c synthesis. ply disconnection approach and identifying sui- sful organic synthesis. rn the concepts of pericyclic reaction mechanisms n the knowledge of photochemical organic reaction	on skeletons s. s for any table syntho s. ons.	s and the successful ns toeffect
Course Outline		UNIT-I: I (TM), s Guidelin Consecu electrop bifunction based of Function derivativ selective protection acids.	Retro Synthetic Analysis: definition, terminolo synthon, functional group interconvention (F nes to good disconnection, designing a synthesis ative verses convergent synthesis - List of Nuc- hilic reagents- Retro synthetic analysis of me onal target molecules and one group C-X dis n umpolung concepts of Seebach. That group inter conversion involving aldehyde, ke yes, amine and nitro compounds. Selectivity: s e and chemo selective reactions. Protecting group on and deprotection of alcohol, amine, aldehyde,	etone, ester, a tereo selection ketone and	molecule inection - of yield, agents and ompounds, Synthesis acids, acid ve, region synthesis: carboxylic
		UNIT-II: A Ar systems w aromaticit NMR con and more properties fullerenes	romaticity omatic character: Five - Six, seven-, and eight- vith aromatic sextets – Huckel's theory of aroma y and anti aromaticity, Electron occupancy in cept of aromaticity and anti aromaticity, system than 10 electrons, alternant and non-alternant of systems. Heteroaromatic molecules. An	membered ri aticity, Conce MO's and a s with 2,4,8, hydrocarbon nulenes ,sye	ings - Other ept of homo romaticity - 10 electrons ns. Bonding dnones and

	UNIT-III: Pericyclic Reactions: Woodward Hoffmann rules; The Mobius and
	Huckel concept, FMO, PMO method and correlation diagrams. Cycloaddition
	and retrocycloaddition reactions; [2+2], [2+4], [4+4, Cationic, anionic, and 1,3-
	dipolar cycloadditions. Cheletropic reactions. ; Electrocyclization and ring
	opening reactions of conjugated dienes and trienes. Sigmatropic rearrangements:
	(1,3), (1,5), (3,3) and (5,5)-carbon migrations, degenerate rearrangements. Ionic
	sigmatropic rearrangements. Group transfer reactions. Regioselectivity,
	stereoselectivity and periselectivity in pericyclic reactions.
	UNIT-IV: Organic Photochemistry-I: Photochemical excitation: Experimental
	techniques; electronic transitions; Jablonskii diagrams; intersystem crossings;
	energy transfer processes; Stern Volmer equation. Reactions of electronically
	excited ketones; $\pi \rightarrow \pi^*$ triplets; Norrish type-1 and type-11 cleavage reactions;
	photo reductions; Paterno-Buchi reactions;
	UNIT-V: Organic Photochemistry-I: Photochemistry of α ,p- unsaturated ketones: cis trans isomerisation. Photon energy transfer reactions. Photo
	cycloadditions Photochemistry of aromatic compounds photochemical
	rearrangements; photo-stationery state; di- π -methane rearrangement; Reaction of
	conjugated cyclohexadienone to 3,4-diphenyl phenols; Barton's reactions.
Recommended	1. F. A. Carey and Sundberg, Advanced Organic Chemistry, 5thed, Tata
Text	McGraw-Hill, New York, 2003.
	2. J. March and M. Smith, Advanced Organic Chemistry, 5 th ed., John-Wiley and sons, 2007.
	3. R. E. Ireland, Organic synthesis, Prentice Hall India, Goel publishing house, 1990
	4. Clayden, Greeves, Warren, Organic Chemistry, Oxford University Press,
	Second Edition, 2016.
	5. M. B. Smith, Organic Synthesis 3 rd edn, McGraw Hill InternationalEdition, 2011.
	6. Badger, <i>Aromatic</i> Character and <i>Aromaticity</i> . <i>B</i> . Cambridge University, 1969
Reference	1. Gill and Wills, Pericyclic Reactions, Chapman Hall, London, 1974.
Books	2. J.A. Joule, G.F. Smith, Heterocyclic Chemistry, Garden City Press, Great
	Britain, 2004.
	5. W. Carumers, Some Modern Methods of Organic Synthesis 4 edn, Cambridge University Press Cambridge 2007
	4. H. O. House. Modern Synthetic reactions. W.A. Benjamin Inc 1972
	5. Jagdamba Singh and Jaya Singh, Photochemistry and Pericyclic
	Reactions, New Age International Publishers, New Delhi, 2012.
	6. Organic synthesis: The Disconnection Approach by Staurt Warren, John
	wiley & sons.

Website	1. https://rushim.ru/books/praktikum/Monson.pdf
and	
e-learning	
source	

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	To recall the basic principles of organic chemistry and to understand the various reactions of organic compounds with reaction mechanisms.	К2
CO2	To understand the versatility of various special reagents and to correlate their reactivity with various reaction conditions.	K4
CO3	To implement the synthetic strategies in the preparation of various organic compounds.	К3
CO4	To predict the suitability of reaction conditions in the preparation of tailor-made organic compounds.	K5
CO5	To design and synthesize novel organic compounds with the methodologies learnt during the course.	K6

Cognitive Level:K1 - Remember; K2 - Understanding; K3 - Apply; K4 - Analyze;

K5 – Evaluate; **K6** – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	М	S	S
CO 2	Μ	S	S	S	S	Μ	S
CO 3	S	S	Μ	S	S	S	S
CO 4	М	S	S	S	S	Μ	S
CO 5	Μ	S	Μ	S	S	Μ	S
		•		Madiu		•	•

S – Strong

M – Medium

Level of Correlation between F	PSO's and CO's
--------------------------------	----------------

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	· Course Code		Course Title	Hours of Teaching / Cycle	No. of Credits
III	23P3CH	C6	COORDINATION CHEMISTRY – I	5	4
Objectiv	es ofthe	•	To gain insights into the modern theories of b compounds. To learn various methods to determine the complexes. To understand and construct correlation diag electronic transitions that are taking place in th To describe various substitution and electron pathways of reactions in complexes. To evaluate the reactions of octahedral and squ	onding in coo stability con grams and pr le complexes. n transfer me lare planar co	ordination estants of redict the echanistic mplexes.
Outline		UNI theor symmetry low spine Mole strom tetral UNI • cha for e level inter	 1-1: Modern theories of coordination compounds: Crystal field ry • splitting of d orbitals in octahedral, tetrahedral and square planar metries • measurement of 10Dq • factors affecting 10Dq • trochemical series • crystal field stabilisation energy for high spin and spin complexes• evidences for crystal field splitting • site selections in els and antispinels • Jahn Teller distortions and its consequences. ecular Orbital Theory and energy level diagrams concept of Weak and ng fields, Sigma and pi bonding in octahedral, square planar and hedral complexes. T-II: Spectral characteristics of complexes: Term states for d ions aracteristics of d-d transitions • charge transfer spectra • selection rules electronic spectra • Orgel correlation diagrams • Sugano-Tanabe energy I diagrams • nephelauxetic series • Racha parameter and calculation of r-electronic repulsion parameter. 		
		UNI comp aspec Stabi stabi Bjern Ion meth effec mag	T-III: Stability and Magnetic property of the c plexes: Factors affecting stability of complex cts of complex formation, Stepwise and overal lity correlations, statistical factors and chelate ef lity constant and composition of the complexes: rum's half method, Potentiometric method, Spect exchange method, Polorographic method and nod (Job'smethod) Magnetic property of complexes to of spin-orbit coupling on magnetic moments, netic moments.	complexes: St exes, Thermo 1 formation of fect, Determi Formation cu rophotometric Continuous es: Spin-orbit quenching of	tability of odynamic constants, ination of urves and c method, variation coupling, f orbital

	UNIT-IV: Kinetics and mechanisms of substitution reactions of
	octahedral and square planar complexes: Inert and Labile complexes;
	Associative, Dissociative and SNCB mechanistic pathways for substitution
	reactions; acid and base hydrolysis of octahedral complexes; Classification
	of metal ions based on the rate of water replacement reaction and their
	correlation to Crystal Field Activation Energy: Substitution reactions in
	square planar complexes: Trans effect theories of trans effect and applications
	of trans effect in synthesis of square planar compounds: Kurnakov test.
	UNIT V. Electron Transfer reactions in established religional operations (Outer sphere)
	UNIT-V: Electron Transfer reactions in octanedral complexes: Outer sphere
	electron transfer reactions and Marcus-Hush theory; inner sphere electron
	transfer reactions; nature of the bridging ligand in inner sphere
	electron transfer reactions. Photo-redox, photo-substitution and photo-
	isomerisation reactions in complexes and their applications.
Recommended	1. J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry –
Text	Principles of structure and reactivity, 4th Edition, Pearson Education
	Inc., 2006
	2. G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson
	Education Inc., 2008
	3. D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993.
	4. B. N. Figgis, Introduction to Ligand Fields, Wiley Eastern Ltd, 1976.
	5. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced
	Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988.
Reference	
Books	1. Keith F. Purcell and John C. Kotz, Inorganic Chemistry, Saunders
	Publications, USA, 1977.
	2. Peter Atkins and Tina Overton, Shriver and Atkins' Inorganic
	Chemistry, 5th Edition, Oxford University Press, 2010.
	3. Basic Inorganic Chemistry, F. A. Cotton, G. Wilkinson, P. L. Guas, John
	Wiley, 2002, 3rd edn.
	4. Concepts and Models of Inorganic Chemistry, B. Douglas, D.
	McDaniel, J. Alexander, John Wiley, 1994, 3rd edn.
	5. Inorganic Chemistry, D. F. Shriver, P. W. Atkins, W. H. Freemanand
	Co, London, 2010.
Website and	https://ocw.mit.edu/courses/5-04-principles-of-inorganic-chemistry-ii- fall-
e-learning	2008/pages/syllabus/
source	

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Understand and comprehend various theories of coordination compounds.	K1
CO2	Understand the spectroscopic and magnetic properties of coordination complexes.	K2
CO3	Explain the stability of complexes and various experimental methods to determine thestability of complexes.	K3
CO4	Predict the electronic transitions in a complex based on correlation diagrams and UV-visible spectral details.	K4
CO5	Comprehend the kinetics and mechanism of substitution reactions in octahedral and square planar complexes.	K6

Cognitive Level:K1 - Remember; **K2** - Understanding; **K3** - Apply; **K4** - Analyze; **K5** – Evaluate; **K6** – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	М	S	S
CO 2	М	S	S	S	S	Μ	S
CO 3	S	S	Μ	S	S	S	S
CO 4	Μ	S	S	S	S	Μ	S
CO 5	Μ	S	Μ	S	S	Μ	S

S – Strong

M – Medium

L – Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	Course C	Code	Course Title	Hours of Teaching / Cycle	No. of Credits				
Ш	23P3CH	CP3	PHYSICAL CHEMISTRY PRACTICAL	5	4				
Objectives of the course			To evaluate the order of the reaction, temperature coefficient, and activation energy of the reaction by following pseudo first order kinetics. To construct the phase diagram of two component system forming congruent melting solid and find its eutectic temperatures and compositions. To determine the kinetics of adsorption of oxalic acid on charcoal. To develop the potential energy diagram of hydrogen ion, charge densitydistribution and Maxwell's speed distribution by computational calculation.						
Course Outline		1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11	 Determination of CST and study of the efference of the effecte of th	ect of impurity nt and dete stration only) sulphate oxid and frequency benzene and t macro metho d determination	y on CST rmination of ation both by factor. water od on of surface erature				
Recomm Text	ended	1. B B 2. S ¹ V 3. V 4. E A N	. Viswanathan and P.S.Raghavan, Practical Phooks, New Delhi, 2009. undaram, Krishnan, Raghavan, Practical Ch iswanathan Co. Pvt., 1996. J.D. Athawale and Parul Mathur, Experimental Age International (P) Ltd., New Delhi, 2008. G. Lewers, Computational Chemistry: Introd pplications of Molecular and Quantum Mech lew York, 2011.	ysical Chemis emistry (Part Physical Che luction to the hanics, 2 nd E	stry, Viva II), S. emistry, New Theory and d., Springer,				

Reference	1. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publishing
Books	House, 2001.
	2. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in Physical
	Chemistry, 8th edition, McGraw Hill, 2009.
	3. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S.
	Chand and Co., 1987.
	4. Shailendra K Sinha, Physical Chemistry: A laboratory Manual,
	Narosa Publishing House Pvt, Ltd., New Delhi, 2014.
	5. F. Jensen, Introduction to Computational Chemistry, 3 rd Ed., Wiley-
	Blackwell.
Website and	https://web.iitd.ac.in/~nkurur/2015- 16/Isem/cmp511/lab_handout_new.pdf
e-learning	
source	

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level				
CO1	To recall the principles associated with various physical chemistry	K1				
	experiments.					
CO2	To scientifically plan and perform all the experiments.					
CO3	To observe and record systematically the readings in all the	K3				
	experiments.					
CO4	To calculate and process the experimentally measured values	K4				
	and compare with graphical data.					
CO5	To interpret the experimental data scientifically to improve students'	K5				
	efficiency forsocietal developments.					

Cognitive Level:K1 - Remember; **K2** - Understanding; **K3** - Apply; **K4** - Analyze; **K5** – Evaluate; **K6** – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	Μ	S	S
CO 2	Μ	S	S	S	S	Μ	S
CO 3	S	S	Μ	S	S	S	S
CO 4	Μ	S	S	S	S	Μ	S
CO 5	Μ	S	Μ	S	S	Μ	S

S – Strong

M – Medium

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	Subject Code	Title of the Paper	Hours of Teaching / Week	No. of Credit				
III	23P3CHCIM	Industry Module - Industrial chemistry	5	3				
Objectives of the course	of > Stud man > Stud uses > Stud > Stud > Stud uses	ents learn about the industrial prod ufacturing processes and their uses in day ents learn about the techniques of studyin ents understand about the renewable and renewable and process ents shall know the principle and process ents learn about the concept of dyes, pi	lucts like cement today life ng battery and fuel non – renewable en of refining petrole gments, paints, pr	t and gl cell and t nergy. oum. reparation	lass, their and			
Outline	Glass: G glasses). I following borosilicat Important technolog oxides, fu cement, ir quick setti	lassy state and its properties. Classific Manufacture and processing of glass. Co types of glasses: Soda lime glass, lead gla te glass, fluorosilicate, coloured glass, p clays and feldspar, ceramic, their y ceramics and their applications, super of llerenes carbon nanotubes and carbon fi agredients and their role, Manufacture of ng cements.	ation (silicate and mposition and pro- ass, armoured glass bhotosensitive glass types and manu- conducting and set ber. Cements: Cl- cement and the set	d non sili operties of s, safety gl ss. Cerami facture. H mi conduc assification etting proc	cate the lass, i cs : High ting n of cess,			
	Unit – II: Primary an of Batter electrolyte properties azide, PET	Battery and Chemical explosive nd Secondary batteries, battery components and their role, Characteristics y. Working of following batteries: Pbaci, Li – Battery, Solid state e battery. Fuel Cells, Solar cell and polymer cell.Orgin of explosive in organic compounds, preparation and explosive properties of lead TN, cyclonite (RDX). Introduction of rocket propellant.						
	Unit – III Review of and their of its compo- composition requisties catalytic of Petrocher types of (Principle Petroleum from bion Petrocher its derivation (conduction)	: Fuel Chemistry Senergy spurces (renewable and non – recalorific value. Coal: Uses of coal (fuel an sition, carbonization of coal. Coal gas, on and uses. Fractionation of coal tar, u of a good metallurgical coke, Coal gasifigasification), Coal liquefaction and solution of crude pertroleum products and their applier and process), Cracking (Thermal and and non – petroleum fuels (LPG, CNG hass), fuel from waste, synthetic fuels (genicals: Vinyl acetate, propylene oxide, Istives Xylene. Lubricants: Classification of and non – conducting) Solid and Properties of lubricants (viscosity index, synthetic).	newable). Classifie d non fuel) in vari- producer gas and ses of coal tar bas fication (Hydro Ga vent Refining. Pe etroleum, Refining cations. Fractiona catalytic cracking , LNG, bio – gas, aseous and liquids coprene, Butadiene n of lubricants, lu semisolid lubrica clud point, pore p	cation of f ous industri d water ga ses chemic asification etroleum g and diffe d Distilla g), Reform fuels der s), clean fu e, Toluene ubricating unts, synth oint) and t	uels ries, as – cals, and and erent ttion ning ived uels. and oils netic cheir			

	determination.
	Unit –IV :Dye Chemistry
	Textile fibre : Classification of fibres – properties. Such count, denier, tex, staple
	length, spinning properties. Strength, elasticity and creep, general characteristics of
	cotton, silk, wool, viscose Nylon polyster.Pretreatment of fibre: Techniques,
	sizing &Desizing (enzymatic desing) scouring – kier boiling bleaching
	(hyphochlorite, peroxide and bleaching powder)
	Unit –V :
	Dyeing classification of dyes: According to structure and application. Technical
	term in dyeing MLR, % of shade, % of exhaustion, equilibrium absorption. Dyebath
	assistant and mechanism: Exhausting agent, wetting agent leveling
	agent. Technology of Textile finishing : Define textile finishing, classification of
	textile finishing, water repellent finishes, flame retardant finishes moth proof finish,
	antistatic finishes, anti microbial finish, moth proof finish.
Recommended	1. Norrish Shreve. R. and Joseph A. Brink Jr Chemical Process Industries,
Text	McGraw Hill, Industrial Book Company London.
	2. Mohapatra – elements of Industrial chemistry 1988 in Delhi – Kalyani
	publications.
	3. B.K.Sharma Industrial Chemistry Ist edition – Goel publications – Meerat
	1983.
Reference	1. Norrish Shreve. R. and Joseph A. Brink Jr Chemical Process Industries, McGraw
Books	Hill, Industrial Book Company London.
	2.Mohapatra – elements of Industrial chemistry 1988 in Delhi – Kalyani
	publications.
	3. B.K.Sharma Industrial Chemistry Ist edition – Goel publications – Meerat
	1983.

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Students should able to learn about the industrial products like cement and glass manufacturing processes and their uses in day today life	K1,K2
CO2	Students could know about the techniques of studying battery and fuel cell and their uses	K3
CO3	Students understood about the renewable and non – renewable energy.	K4
CO4	Students should know the principles and process of refining petroleum. prevention. Classifications, importance, uses, fastness and applications of dyes.	K4
CO5	Students have an exposure on the concept of dyes, pigments, paints, preparation and use	K5

Cognitive Level:K1 - Remember; K2 - Understanding; K3 - Apply; K4 - Analyze;

K5 – Evaluate; **K6 –** Create

M.Sc. Chemistry

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	М	S	S
CO 2	М	S	S	S	S	М	S
CO 3	S	S	М	S	S	S	S
CO 4	М	S	S	S	S	М	S
CO 5	М	S	М	S	S	М	S
	1	1	I M	– Mediu	ım	1	1

CO-PO Mapping (Course Articulation Matrix)

S – Strong

w

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	Course Cod	Course Title	Hours of Teaching / Cycle	No. of Credits					
III	23P3CHED	Extra Disciplinary Course - CHEMISTRY IN EVERY DAY LIFE	5	3					
Objective the cours	es of • L se • L • L • T n • k • S d	 Learn the manufacture and uses of cleaning agents. Various nature and characteristics of water Learn about importance and preservation of food. To enable the students to acquire knowledge about the green chemistry and nanotechnology. Know and learn the various uses and constituents of cosmetic. Study the various classification, importance and classifications of polymers and dves. 							
Course Outline	 UNIT-I: Cleaning agents: manufacture and uses of soaps, detergents, baking power shampoo, washing powder and bleaching powder: Water: Characteristics' of water, soft water and hard water - types - remove hardness - ion exchange method. Reverse osmosis method, Water pollution, carand prevention. UNIT-II: Food: Importance - spoilages - causes, preservation - additives - color flavouring agents, beverages. Soft drinks aerated water - manufacturing - mi water. Fruits, vegetables, dairy product - storage, preservation. Minerals in food anti-oxidants. Preparation of fruit Jam and pickle. 								
	UN hair man	C-III: Cosmetics: Face powder – constituent dye – composition and side effects. T facturing – lotions.	ts, uses – side – ef Sooth powder –	fects. Nail po composition	olish, and				
 UNIT-IV: Green chemistry: Basic concepts of Green chemistry and its signifinday to day life. Polymers: Classification – Types of polymerization – plastics – classification – of plastics – PVC, Teflon, PET, Bakelite – Rubber – Natural and synthetic – rubber, Butyl Rubber. Vulcanization of rubber, neoprene rubber, Plastic polymery and prevention. 					ance types unas ution				
	 UNIT-V: Nano Technology: Basic concepts of Nano Technology and its importation in day to day life. Dyes: Importance of food colours – PFA (Prevention of Food Adulteration A Natural dyes – Classification - importance – Uses of the following Synthetic dye Direct dyes, acid dye, Basic dye, mordant dye, Reactive dye, Disperse dye.Fastness Light and Washing. Application of dyes in food, paper, plastic and lather. 								
Recomm Text	ended 1. Put 2.	Dr. GokulanandaMohapatra, Elements shers. New edition 1998. Ramani,V.Alex,Food Chemistry(2009),MJ	of Industrial Ch P publishers.	nemistry, Kal	lyani				

Reference Books	 Brain A.C.S. Reinhold, Production and properties of Industrial chemicals — New York. Burgh, A. Fermentation Industries, Inter science, New York.
Website	1. <u>https://www.vedantu.com/chemistry/green-chemistry</u>
and	2. <u>https://byjus.com/free-ias-prep/nanotechnology/</u>
e-learning	3. <u>https://byjus.com/jee/polymers/</u>
source	

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level					
CO1	know basic concepts of Nano Technology and its importance in day to						
	day life. Basic concepts of Green chemistry and its significance in day						
	to day life.						
CO2	Enrich knowledge on Manufacturing & uses of cleaning agents,	K3					
	characteristics of water. Importance, causes and prevention of additives,						
	storage & preservation of food.						
CO3	Understood the Cosmetics constituents, uses and side effects	K4					
CO4	Classify the types of plastic, vulcanization of rubber and Plastic pollution and	K4					
	prevention. Classifications, importance, uses, fastness and applications of						
	dyes.						
CO5	Analyse the hardness, pollutions and prevention of water.	K5					

Cognitive Level:K1 - Remember; **K2** - Understanding; **K3** - Apply; **K4** - Analyze; **K5** – Evaluate; **K6** – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	Μ	S	S
CO 2	Μ	S	S	S	S	Μ	S
CO 3	S	S	Μ	S	S	S	S
CO 4	Μ	S	S	S	S	Μ	S
CO 5	Μ	S	Μ	S	S	Μ	S

S – Strong

M – Medium Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	Course Code	Course Title	Hours of Teachin g / Cycle	No. of Credits
III	23P3CHSEC	Skill Enhancement Course - Dye chemistry	2	2
Objectiv course an	es of the re to	earn about the main purpose of dyeing and how ndustry. understand the dyeing is the application of pigment know about dyes may require a mordant to im he dye on the fiber. earn that pretreatment is a heart of processing of tex	w fabrics a s on textile prove the xtile.	are dyed in materials. fastness of
Course Outline	U B C a r c o S C U	nit - I asic concepts of colour chemistry: Colour and olour and chemical constitution – Witt's the axochrome – chromogen – batho chromic and sonance and valence bond theories – requirements dyes based on their their structures and use. (and the structures and use) (and the structures and use) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	sensation ory - chr hypsochroi of a dye - o red, Mala o dyes and	- theories of omophore - mic shifts – classification thite green, fluorescein.
	P 	retreatment of fibers : Singing – Singing technique hydrolytic and enzymatic desizing methods - see ethod - bleaching methods (with hypochlorite, provider) – mercerization . echnical terms in dyeing: M.L.ratio – % of shace quilibrium absorption. Dyeing processes : Vat a kidation and after treatment steps. <i>Reactive dyein</i> active dyes – principles involved in the dyein <i>polyester:</i> principle – carrier dyeing – functions of spersing agents - high temperature dyeing. <i>Ingra</i> ith one example.	ues - sizing couring - beroxide, and le – % of of <i>lyeing</i> : Vat <i>ng</i> : Hot and ng process f carrier – <i>ain dyes</i> : a	g & desizing Kier boiling nd bleaching exhaustion – ting, dyeing, d cold brand . Dyeing of functions of izoic colours
Recomm Text	ended	 V.A.Shenai, An introduction to dyes stuff publication, Mumbai. V.A.Shenai , vol. IV, Technology of tex publication , Mumbai. V.A.Shenai, vol. I, Textile fibres, Sevak publication V.A.Shenai, vol.III , Techniques of bleach ,Mumbai. V.A.Shenai , vol.III, Principle of dyeing , Sevak 	and interm tile proce ation, Mun ting, Seval publicatior	ediate–Sevak ssing, Sevak hbai. k publication h, Mumbai.
Reference Books	e l	1. Jain M.K.,Sharma S.C., Modern Organic cher Co., Jalandar, (2012)	mistry,Vish	al Publishing

Website and	1.	http://en.wikipedia.org/wiki/Hair_coloring
e-learning	2.	http://www.pbm.com/~lindahl/articles/food_coloring_agents.html
source		

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Students should able to learn about the main purpose of dyeing and how	K1
	fabrics are dyed in industry.	
CO2	Students should able to understand the dyeing is the application of	K2, k3
	pigments on textile materials.	
CO3	Students should able to know about dyes may require a mordant to	K4
	improve the fastness of the dye on the fiber.	
CO4	Students should able to learn that pretreatment is a heart of processing of	K5
	textile.	
CO5	Students should able to learn about reactive dyeing	K6

Cognitive Level:K1 - Remember; K2 - Understanding; K3 - Apply; K4 - Analyze;

K5 – Evaluate; K6 – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	М	S	S
CO 2	М	S	S	S	S	М	S
CO 3	S	S	М	S	S	S	S
CO 4	М	S	S	S	S	М	S
CO 5	М	S	М	S	S	М	S
	1				L	I	1

S – Strong

M – Medium

L – Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	c Course Code		Course Title	Hours of Teaching / Cycle	No. of Credits		
III	23Р3СНА	ECC3	Ability Enhancement Compulsory Course - RESEARCH METHODOLOGY	2	2		
Objecti course a Course Outline	ves of the are to	 I. <	 learn about various journals preparation of manuscript internet and electronic media to prepare review types of errors estimations of errors UNIT I 1. Literature Survey Source of Information - Primary, Secondary, Tertiary source - Journals - abstracts - current titles - Review Monographs - Dictionaries - Information retrievals using Internet and other electronic medias (preparing a review article related to problem of research of the student). 2. E-Journals, Search engines- Google, Yahoo Search, Wikipedia. 3. Reports of research work- laboratory observation - preparation of records - Manuscripts - Research paper formats in Indian J. Chemistyr., J. Indian Chem. Soc., J. AM. Chem. Soc., Tetrahedran. Ana., Chem. J. Chem. Education, Etc., Writing of the project reports of thesis. 				
2. Error Analysis Types of Error - Minimization of error - Accuracy, figures, use of calculus in the estimation of errors - Freque binomial distribution and normal distribution - mean, an varcence Q-test, t-test - chi-square test - F-test- Analysis of Correlation and Regression - Curve fitting				cy, Precision, equency distrib , and standard s of variance (A	significant utions, the deviation ANOVA) -		
Text	nended	 D.B. Hibbert and J.J. Gooding, Data Analysis for chemistry, Oxford University Press, 2006. J. Topping, Errors of Observation and Their Treatment, Fourth Edn., Chapman Hall, London, 1984. S.C. Gupta, Fundamentals of Statistics, Sixth Edn., Himalaya Publ. House, Delhi, 2006. H.E.Solbers, Inaccuracies in Computer Calculation of Standard Deviation, Anal. Chem. 55, 1611 (1983). 					
Referen Books	ice	1. F v	P.M.Wanek et al., Inaccuracies in the calculat vith Electronic calculators, Anal. Chem. 54, 1877	tion of standa (1982).	rd Deviation		

Website and	1. http://www.virtualref.com/govdocs/s189.htm
e-learning	2. http://www.inflibnet.ac.in
source	3. http://www.springerlink.com
	4. http://rsc.org
	5. http://www.pubs.acs.org
	6. http://dspace.org
	7. http://dspace.bdu.ac.in

Course Outcomes (for Mapping with POs and PSOs) On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	learn about various journals	K1
CO2	preparation of manuscript	K2
CO3	internet and electronic media to prepare review	K3
CO4	understand types of errors	K4
CO5	acquire the knowledge on estimations of errors	K5

Cognitive Level:K1 - Remember; K2 - Understanding; K3 - Apply; K4 - Analyze;

K5 – Evaluate; K6 – Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	М	S	S
CO 2	Μ	S	S	S	S	Μ	S
CO 3	S	S	Μ	S	S	S	S
CO 4	Μ	S	S	S	S	Μ	S
CO 5	Μ	S	Μ	S	S	Μ	S

CO-PO Mapping (Course Articulation Matrix)

S – Strong

M – Medium

L – Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	· Course Code		Course Title	Hours of Teaching / Cycle	No. of Credits			
IV	23P4CHC7		COORDINATION CHEMISTRY – II	6	4			
Objectiv course	es ofthe	 To recognize the fundamental concepts and structural aspects of organometallic compounds. To learn reactions of organometallic compounds and their catalytic behaviour. To identify or predict the structure of coordination compounds usingspectroscopic tools. To understand the structure and bonding in coordination complexes. To evaluate the spectral characteristics of selected complexes. 						
Outline		UNIT-1: Chemistry of organometallic compounds: Classification of organometallic compounds based on M-C bond – 18 and 16 electron rule; Bonding in metal – olefin complexes (example: Ziese's salt), metal-acetylene and metal-allyl complexes; Metal-cyclopentadienyl complexes – Examples and MO approach to bonding in metallocenes; fluxional isomerism. Metal – carbonyl complexes: MO diagram of CO; Structure and bonding – bonding modes, MO approach of M-CO bonding, π - acceptor nature of carbonyl group, synergistic effect (stabilization of lower oxidation states of metals); Carbonyl clusters: Low nuclearity and high nuclearity carbonyl clusters – Structures based on polyhedral skeleton electron pair theory or Wade's rule						
	UNIT-II: Reactions and catalysis of organometalli Reactions of organometallic compounds: Oxidative add elimination (α and β eliminations), migratory insertion metathesis reaction. Organo-metallic catalysis: Hydrogen (Wilkinson's catalyst), hydroformylation of olefins using co- catalysts (oxo process), oxidation of olefin (Wacker isomerisation, water gas shift reaction, cyclo-oligomerisation acetylenes using Reppe's catalysts, Monsonto process. UNIT-III: Inorganic spectroscopy -I: IR spectroscoc coordination on the stretching frequency-sulphato, carbonato nitro, thiocyanato, cyano, thiourea, DMSO complexes; IR carbonyl compounds. NMR spectroscopy - Introduction, app 15N, 19F, 31P-NMR spectroscopy in structural identificati complexes, fluxional molecules, quadrupolar nuclei- effect in NMR spectroscopy.							
	UNIT-IV: Inorganic spectroscopy-II: Introductory terminologies: g and A parameters-definition, explanation and factors affecting g and A; Applications of ESR to coordination compounds with one and more than one unpaired electrons – hyperfine and secondary hyperfine splitting andKramer's doublets; ESR spectra of V(II), Mn(II), Fe(II), Co(II), Ni(II),Cu(II) complexes, bis(salicylaldimine)copper(II) and [(NH ₃) ₅ Co-O ₂ -Co(NH ₃) ₅] ⁵⁺ Mossbauer spectroscopy – Mossbauer effect, Recoil energy, Mossbauer active nuclei, Doppler shift, Isomer shift, quadrupole splitting and magnetic interactions. Applications of Mössbauer spectra to Fe and Sn compounds.							
-------------------------------------	--							
	UNIT-V: Photo Electron Spectroscopy: Theory, Types, origin of fine structures - shapes of vibrational fine structures – adiabatic and vertical transitions, PES of homonuclear diatomic molecules (N_2 , O_2) and heteronuclear diatomic molecules (CO, HCl) and polyatomic molecules (H ₂ O, CO ₂ , CH ₄ , NH ₃) – evaluation of vibrational constants of the above molecules. Koopman's theorem- applications and limitations. Optical Rotatory Dispersion – Principle of CD and ORD; Δ and λ isomers in complexes, Assignment of absolute configuration using CD and ORD techniques.							
Recommended Text	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B D Gupta and A K Elias, Basic Organometallic Chemistry:Concepts, Syntheses and Applications, University Press, 2013. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann,Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988. 							
Reference Books	 Crabtree, Robert H. The Organometallic Chemistry of the Transition Metals. 3rd ed. New York, NY: John Wiley, 2000. P Gütlich, E Bill, A X Trautwein, Mossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, 1st edition, Springer- Verlag Berlin Heidelberg, 2011. Concepts and Models of Inorganic Chemistry, B. Douglas, D. McDaniel, J. Alexander, John Wiley, 1994, 3rd edn. K. F. Purcell, J. C. Kotz, Inorganic Chemistry; Saunders: Philadelphia, 1976. R. S. Drago, Physical Methods in Chemistry; Saunders: Philadelphia, 1977. 							
Website and e-learning source	https://archive.nptel.ac.in/courses/104/101/104101100/							

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	Understand and apply 18 and 16 electron rule for organometallic compounds.	K2
CO2	Understand the structure and bonding in olefin, allyl, cyclopentadienyl and carbonyl containing organometallic compounds	K1
CO3	Understand the reactions of organometallic compounds and apply them in	K3
CO4	understanding the catalytic cycles	K4
CO5	Identify / predict the structure of coordination complexes using spectroscopic tools such as IR, NMR, ESR, Mossbauer and optical rotatory dispersion studies to interpret the structure of molecules by various spectral techniques.	К5

Cognitive Level:K1 - Remember; K2 - Understanding; K3 - Apply; K4 - Analyze;

K5 – Evaluate; **K6** – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	Μ	S	S
CO 2	Μ	S	S	S	S	М	S
CO 3	S	S	Μ	S	S	S	S
CO 4	М	S	S	S	S	М	S
CO 5	Μ	S	Μ	S	S	Μ	S

S – Strong

M – Medium

L – Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	Course Code		ourse Code Course Title		No. of Credits		
IV	23P4CH	C8	PHYSICAL CHEMISTRY-II	5	4		
Objectives of the course •			 To understand the essential characteristics of wave functions and needfor the quantum mechanics. To know the importance of quantum mechanical models of particle in abox, rigid rotor and harmonic oscillator. To apply the quantum mechanics to hydrogen and polyelectronic systems. To familiarize the symmetry in molecules and predict the point groups. To predict the vibrational modes, hybridization using he concepts of group theory. 				
Course Outline	CourseUNIT-I: Wave particle duality, Uncertainty principle, PartiOutlineSchrodinger wave equation, wave function, properties of w Properties of wave function, Normalized, Orthogonal, ortho values, Eigen functions, Hermitian properties of operators. I quantum mechanics-black body radiation, photoelectric eff spectrum. Need for quantum mechanics, Postulates of Quantum				e wave and ve function. ormal, Eigen roduction to ct, hydrogen Mechanics, t		
	 Schrodinger wave equation, Time independent andtime dependent UNIT-II: Quantum models: Particle in a box-1D, two dimension three-dimensional, degeneracy, application to linear conjugated measures solution, anharmonicity, force constant and its significance. Rigid wave equation and solution, calculation of rotational constants and length of diatomic molecules. UNIT-III: Applications to Hydrogen and Poly electron atoms: Heatom and hydrogen like ions, Hamiltonian-wave equation and solution for the function of radial distribution for Approximation methods –variation methods: trial wave function, wintegral and application to particle in 1D box. Perturbation methods order applications. Hatterfock self-consistent field method, Hohenbee theorem and Kohn-Sham equation, Helium atom-electron spin exclusion principle and Slater determination 				ensional and d molecular equation and Rigid Rotor- ts and bond s: Hydrogen nd solutions, on functions. on, variation ethod - first enberg-Kohn spin, paulis		

	UNIT-IV: Group theory
	Principles – Elements of group theory –properties of a group and subgroup- classes- group multiplication tables – symmetry elements and operations – inter relations among symmetry operation -point groups of molecules Comparison of crystal symmetry with molecular symmetry Matrix representations theory– reducible and irreducible representations – Great orthogonality theorem and its consequences –construction of character table C_{2V} , C_{2h} electronic spectra of ethylene.and C_{3V} .
	UNIT-V: Applications of group theory: Hybridization schemes for atoms in molecules of different geometry - AB_4 tetrahedral, AB_3 trigonal planar - Symmetry selection rules for IR and Raman SpectraMutual exclusion rule -Symmetries of vibrational modes in non-linear molecules (H ₂ O, NH ₃ and BF ₃ only) and IR & Raman active - Vibration modes - electronic spectra of ethylene.
Recommended Text	 R.K. Prasad, Quantum Chemistry, New Age International Publishers, New Delhi, 2010, 4th revised edition. F. A. Cotton, Chemical Applications of Group Theory, John Wiley & Sons, 2003, 2nd edition. A. Vincent, Molecular Symmetry and Group Theory. A Programmed Introduction to Chemical Applications, John and Willy & Sons Ltd., 2013, 2nd Edition. T. Engel & Philip Reid, Quantum Chemistry and Spectroscopy, Pearson, New Delhi, 2018, 4th edition. G. K. Vemulapalli, Physical Chemistry, Prentice Hall of India Pvt. Ltd. 2001. 6. D.A. McQuarrie, Quantum Chemistry, Viva Books PW. Ltd, 2013, 2nd edition. S.Jayanthi and M.Pramesh, Group theory and statistical thermodynamics, saratha pathippagam 2008
Reference Books	 N. Levine, Quantum Chemistry, Allyn& Bacon Inc, 1983, 4th edition. D.A. McQuarrie and J. D. Simon, Physical Chemistry, A Molecular Approach, Viva Books Pvt. Ltd, New Delhi, 2012. R. P. Rastogi & V. K. Srivastava, An Introduction to Quantum Mechanics of Chemical Systems, Oxford & IBH Publishing Co., New Delhi, 1999. R.L. Flurry. Jr, Symmetry Group Theory and Chemical applications, Prentice Hall. Inc, 1980 J. M. Hollas, Symmetry in Molecules, Chapman and Hall, London, 2011, Reprint.
Website and e-learning source	1. <u>https://nptel.ac.in/courses/104101124</u> 2. <u>https://ipc.iisc.ac.in/~kls/teaching.html</u>

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	To discuss the characteristics of wave functions and symmetry functions.	K2
CO2	To classify the symmetry operation and wave equations.	K3
CO3	To apply the concept of quantum mechanics and group theory to predict the electronic structure.	K4
CO4	To specify the appropriate irreducible representations for theoretical applications.	K5
CO5	To develop skills in evaluating the energies of molecular spectra.	K6

Cognitive Level:K1 - Remember; K2 - Understanding; K3 - Apply; K4 - Analyze;

K5 – Evaluate; **K6** – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	М	S	S
CO 2	М	S	S	S	S	М	S
CO 3	S	S	М	S	S	S	S
CO 4	Μ	S	S	S	S	Μ	S
CO 5	М	S	М	S	S	М	S
	1			Madiu		1	1

S – Strong

M – Medium

L – Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	Course Co	e Code Course Title		No. of Credits		
IV	23P4CHC	4 ANALYTICAL INSTRUMENTATION TECHNIQUES	5	4		
Objectiv course an	es ofthe re to	 study the principles associated with physexperiments scientifically plan and perform all the experime observe and record systematically the readings calculate and process the experimentally mease with graphical data interpret the experimental data scientifically to i for societal developments 	ical chemist ents s in all the ex sured values a mprove stude	ry electrical periments and compare nts efficiency		
Course	T	t I. CONDUCTOMETRIC TITRATIONS				
Outline		 I. acid – base titrations i) Strong acid Vs strong base ii) Weak acid Vs strong base iii) Mixture of acids Vs strong base iv) Mixture of bases Vs strong acid II. precipitation titrations i) Kl Vs AgNO3 ii) Mixture of halides (KCl + KI) Vs Agiiii) K2 SO4 Vs BaCl2 III. verification of ostwald's dilution law IV. Verification of Debye Huckel Onsagar equilibrium of solubility of sparingly soluble 	NO ₃ uation e salt.			
	U	 it II POTENTIOMETER TITRATIONS acid – base titrations Strong acid Vs strong base Weak acid Vs strong base Weak acid Vs strong base Mixture of acids Vs strong base II. precipitationtitrations KI Vs AgNO3 Mixture of halides (KCl + KI) III. Rredox titrations KMnO4 Vs KI, FAS KMnO4 Vs KI, FAS K2Cr2O7 Vs KI, FAS IV. Determination of pH of buffer solutions V. Determination of activity coefficient VI. Determination of Bedox potential of Fedorational participation of Padox potential of Fedorational patients 	Vs AgNO ₃ f an organic a 3^{+} / Fe 2^{+} such	acid		

	INIT_III.
	1 Estimation of Fe Cu and Ni by colorimetric method
	2 Determination of the amount (mol/I) of ferricyanide present in the
	given solution using cyclic voltammetry
	3 Determination of the diffusion coefficient of ferricyanide using
	5. Determination of the unfusion coefficient of ferricyanide using
	A Determineting of the step lend or leng notesticl, of femi
	4. Determination of the standard redox potential of ferri-
	ferrocyanide redox couple using cyclic voltammetry.
	8. Analysis of water quality through COD, DO, BOD
	measurements.
	9. Separation of (a) mixture of Azo dyes by TLC (b) mixture of
	metal ions by Paper chromatography
	10. Estimation of chlorophyll in leaves and phosphate in wastewater
	by colorimetry.
	UNIT-III: Interpretation and identification of the given spectra of various
	organic compounds arrived at from the following instruments
	1.UV-Visible 2.IR 3.Raman4.NMR 5. ESR
Recommended	1. Vogel's Text book of Practical Organic Chemistry, 5th Ed,
Text	ELBS/Longman, England, 2003.
	2. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry, Viva
	Books, New Delhi, 2009.
	3. Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.
	Viswanathan Co. Pvt., 1996.
Reference	1. J. N. Gurtu and R. Kapoor, Advanced Experimental Chemistry, S.
Books	Chand and Co., 2011.
	2. J. B. Yadav, Advanced Practical Physical Chemistry, Gobel
	Publishing House, 2001.
	3. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in
	Physical Chemistry, 8th edition, McGraw Hill, 2009.
	4. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry S
	Chand and Co. 1987
Website and	
e-learning	1. https://bit.ly/3QESF7t
source	2. https://bit.lv/3OANOnX
source	2. https://out/joxintonit

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	To recall the principles associated with physical chemistry	K1
	electrical experiments	
CO2	To scientifically plan and perform all the experiments	K2
CO3	To observe and record systematically the readings in all the experiments	K3
CO4	To calculate and process the experimentally measured values	K4
	and compare withgraphical data.	
CO5	To interpret the experimental data scientifically to improve students	K6
	efficiency for societaldevelopments.	

Cognitive Level:K1 - Remember; **K2** - Understanding; **K3** - Apply; **K4** - Analyze; **K5** – Evaluate; **K6** – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	Μ	S	S
CO 2	Μ	S	S	S	S	Μ	S
CO 3	S	S	Μ	S	S	S	S
CO 4	Μ	S	S	S	S	Μ	S
CO 5	Μ	S	Μ	S	S	Μ	S

S – Strong

M – Medium

L – Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	· Course Code		Course Title	Hours of Teaching / Cycle	No. of Credits			
IV	23P4CHE	EL5A	Major Elective – V CHEMISTRY OF NATURAL PRODUCTS	5	3			
Objectiv course	es ofthe	•	 To learn the basic concepts and biolebiomolecules and natural products. To explain various of functions of carbohydacids, steroids and hormones. To understand the functions of alkaloids and the functions of alkaloids and the products. To extract and construct the structure of new a fromdifferent methods. 	ogical impo lrates, protei erpenoids. iomolecules a alkaloids and	ortance of ns, nucleic and natural terpenoids			
Course Outline		UNI func eluci Pipe Hept UNI class deter Carc and s UNI anthe Cyar impo flavo UNI isola biolo Stero subs hydr occu	T-I: Alkaloids: Introduction, occurrence, classifications of alkaloids. Classification, general method dation. Chemical methods of structure determinerine, Nicotine, Papaverine. Atropine, Quinine, Eaphylline, Papaverine and Morphine. T-II: Terpenoids: Introduction, occurrentification. General methods of determininermination of Camphor, Abietic acid, Cadinenerotenoids: Introduction, geometrical isomerismeters of β-carotene and vitamin-A. T-III: Anthocyanines and flavones: Anthococyanines. Structure and general methods of synthesis of flavones. Structure and determination of the structure and determination of the structure determination of the synthesis. Structure and the synthesis of flavones. Structure and determination of the synthesis. Quercetin: Structure and synthesis of points. Classification and spectral opical importance, Structure and synthesis of points: Steroids-Introduction, occurrence, nomentituents, Diels' hydrocarbon, stereochemistro ocarbon, biological importance, colour reaction rence, tests, physiological activity, biosynthesis re	fication, isol ds of structur ation of Con Belladine, Co ence, Isop g structure. e, Squalene, h, Structure, cyanines: Int nthesis of an n. Flavones ination of the mportance. duction, occ properties Uric acid at iclature, cont y, classifica ns of sterols, is of cholest	ation and al iine, caine, rene rule, . Structure Zingiberine. functions roduction to thocyanines. : Biological flavone and currence and of steroids. nd Caffeine. figuration of tion, Diels' cholesterol- rerol from			
		squalene. UNIT-V: Natural Dyes: Occurrence, classification, isolation, purification, properties, colour and constitution. Structural determination and synthesis of indigoitin and alizarin.						

Recommended	1. G. K. Chatwal, Organic Chemistry on Natural Products, Vol. 1,
Text	Himalaya Publishing House, Mumbai, 2009.
	2. G. K. Chatwal, Organic Chemistry on Natural Products, Vol. 2,
	Himalaya Publishing House, Mumbai,2009.
	3. O. P. Agarwal, Chemistry of Organic Natural Products, Vol. 1,
	Goel Publishing House, Meerut, 1997.
	4. O. P. Agarwal, Chemistry of Organic Natural Products, Vol. 2,
	Goel Publishing House, Meerut, 1997.
	5 I. L. Finar, Organic Chemistry Vol-2, 5 th edition, Pearson
	Education Asia, 1975.
Reference	1. I. L. Finar, Organic Chemistry Vol-1, 6 th edition, Pearson
Books	Education Asia.2004.
	2. Pelletier. Chemistry of Alkaloids. Van Nostrand
	Reinhold Co.2000.
	3. Shoppe, Chemistry of the steroids, Butterworthes, 1994.
	4. I. A. Khan, and A. Khanum. Role of Biotechnology in medicinal &
	aromatic plants, Vol 1 and Vol 10, Ukkaz Publications, Hyderabad, 2004.
Website and	https://sites.google.com/site/chemistryebookscollection02/home/organic-
e-learning	chemistry/organic
source	

On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	To understand the biological importance of chemistry of natural products.	K1
CO2	To scientifically plan and perform the isolation and characterization of synthesized natural products.	K3
CO3	To elucidate the structure of alkaloids, terpenoids, carotenoids, falvanoids and anthocyanins.	K2
CO4	To determine the structure of phytochemical constituents by chemical and physicalmethods.	K5
CO5	To interpret the experimental data scientifically to improve biological activity ofactive components.	K6

Cognitive Level:K1 - Remember; **K2** - Understanding; **K3** - Apply; **K4** - Analyze; **K5** – Evaluate; **K6** – Create

M.Sc. Chemistry

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	Μ	S	S
CO 2	М	S	S	S	S	Μ	S
CO 3	S	S	Μ	S	S	S	S
CO 4	М	S	S	S	S	Μ	S
CO 5	М	S	Μ	S	S	Μ	S
S – Strong			M – N	ledium	L – Low		

CO-PO Mapping (Course Articulation Matrix)

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	Course Code		Course Title	Hours of Teaching / Cycle	No. of Credits		
IV	23P4CHH	EL5B	Major elective – V POLYMER CHEMISTRY	5	3		
Objectiv course	es ofthe	•	To learn the basic concepts and bonding in per To explain various types of polymerization re To understand the importance of industrial syntheticuses. To determine the molecular weight of polymer To predict the degradation of polymers and c	olymers. eactions and k polymers and ers. onductivities.	inetics. I their		
Course Outline		T-I: Characterization, Molecular weight ary and secondary bond forces in polymers; c ture, chemical tests, thermal methods, Tg lity. Determination of Molecular mass of po ecular mass (M_n) and Weight average molecular of polymers. Molecular weight determination ical and methods	and its Det ohesive energ , molecular lymers: Num mass of high polyn	ermination: y, molecular distribution, ber Average ners by			
		UNI poly: poly: poly:	T-II: Mechanism and kinetics of Polym merization: Cationic, anionic, free radical poly mers: Ziegler Natta polymerization. Reaction merization, Degree of polymerization.	erization: Clamerization, S on kinetics.	hain growth tereo regular Step growth		
UNIT-III: Techniques of Polymerization and Polymer Bulk, Solution, Emulsion, Suspension, solid, interfacial a polymerization. Types of Polymer Degradation, Therma mechanical degradation, photodegradation, Photo stabilizers, phase polymerization.				Polymer D nterfacial and n, Thermal stabilizers, So	r Degradation: and gas phase hal degradation, s, Solid and gas		
		UNIT-IV: Industrial Polymers: Preparation of fibre forming polymers, elastomeric material. Thermoplastics: Polyethylene, Polypropylene, polystyrene, Polyacrylonitrile, Poly Vinyl Chloride, Poly tetrafluoro ethylene, nylon and polyester. Thermosetting Plastics: Phenol formaldehyde and expoxide resin. Elastomers: Natural rubber and synthetic rubber - Buna - N, Buna-S and neoprene. Conducting Polymers: Elementary ideas; examples: poly sulphur nitriles, polyphenylene, poly pyrrole and poly acetylene. Polymethylmethacrylate, polyimides, polyamides, polyurethanes, polyureas, polyethylene and polypropylene glycols.					

	UNIT-V: Polymer Processing: Compounding: Polymer Additives: Fillers,							
	Plasticizers, antioxidants, thermal stabilizers, fire retardants and colourants.							
	Processing Techniques: Calendaring, die casting, compression moulding,							
	injection moulding, blow moulding and reinforcing. Film casting,							
	Thermofoaming, Foaming. Catalysis and catalysts – Polymerization							
	catalysis, catalyst support, clay compounds, basic catalyst, auto-exhaust							
	catalysis, vanadium, heterogeneous catalysis and active centres.							
Recommended	1. V.R. Gowariker, <i>Polymer Science</i> , Wiley Eastern, 1995.							
Text	2. G.S. Misra, <i>Introductory Polymer Chemistry</i> , New Age International							
	(Pvt) Limited, 1996.							
	3. M.S. Bhatnagar, A Text Book of Polymers, vol-I & II, S.Chand &							
	Company, New Delhi, 2004.							
Reference	1. F. N. Billmeyer, Textbook of Polymer Science, Wiley Interscience,							
Books	1971.							
	2. A. Kumar and S. K. Gupta, Fundamentals and Polymer Science and							
	Engineering, Tata McGraw-Hill, 1978.							

Course Outcomes (for Mapping with POs and PSOs) On the successful completion of the course, students will be able to

CO Number	CO Statement	Cognitive Level
CO1	To understand the bonding in polymers.	K2
CO2	To scientifically plan and perform the various polymerization reactions.	K3
CO3	To observe and record the processing of polymers.	K4
CO4	To calculate the molecular weight by physical and chemical methods.	K5
CO5	To interpret the experimental data scientifically to improve the quality of	K6
	syntheticpolymers.	

Cognitive Level:K1 - Remember; **K2** - Understanding; **K3** - Apply; **K4** - Analyze; **K5** – Evaluate; **K6** – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	Μ	S	S
CO 2	Μ	S	S	S	S	Μ	S
CO 3	S	S	Μ	S	S	S	S
CO 4	Μ	S	S	S	S	Μ	S
CO 5	Μ	S	Μ	S	S	Μ	S

S – Strong

M – Medium

L – Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Semester	Course Code		Course Title	Hours of Teaching / Cycle	No. of Credits				
IV	23P4CHSEC4		Skill Enhancement Course - Paint Chemistry	2	2				
Objectives of the course are to		•	 have knowledge about the ingredient of paints and their functions. have the knowledge about different types additives and the polymers used in paint understand the different types of paints 						
Course UN Outline		UNII	NIT - I Paint ingredients - Classification of paints - according to drying						
		shelf life, Pot life, Solids, vehicle – consistency of thixotrophy – Dry film properties – Adhesion – gloss – flexibility –repair and renovation – Pigments – function (opacity, protective and Reinforcing) – classification – properties – optical – particle size and shape – refractive index – Tinting strength – Chemical reactivity – Bleeding characteristic Hiding power – Examples of pigments – zinc oxide – chrome greens – Lithophone selection of pigments – dispersion – color matching.							
IINU			IT – II						
Classification of solvents – facts and theory – solvent – p boiling point and evaporation rate – uses of solvents –tox additives wetting and dispersing agents. Anti setting – anti bodying agents – Aluminum soaps – hydrogenated castor oi clays – anti skinning agents – examples – anti flood and additives - factors influencing flooding and floating – Mildew – dispersing agents (anionic) stabilizing agents (Non ionic) Anti fo – thickening agents – preservatives – freezer stabilizers.					properties – oxicity. Paint i – sag and oil, modified d anti- float - inhibitors – foam agents				
Recommended Text1. G.P.A. Turner -Principles of Paint Chemistry and Introduction to Technology Oxford & IBH Publishing & Co 2. Paint Film Defects by HESS's 3. Modern technology of surface coating & Varnishes by SSP					on to paint				
Reference1.Books			Paint, Lacquers, Enamels, Powder coating & Varnishes by SSP consultants.						

On the successful completion of the course, students will be able to

CO	CO Statement		
Number		Level	
CO1	gain knowledge about the ingredient of paints and their functions	K1	
CO2	gain knowledge about different types additives and the polymers used in paint	K2	
CO3	understand the different types of paints	K3	
CO4	chemical reactivity of paints	K4	
CO5	applications of various solvents	K5	

Cognitive Level:K1 - Remember; K2 - Understanding; K3 - Apply; K4 - Analyze;

K5 – Evaluate; K6 – Create

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	S	S	S	S	Μ	S	S
CO 2	Μ	S	S	S	S	Μ	S
CO 3	S	S	Μ	S	S	S	S
CO 4	Μ	S	S	S	S	Μ	S
CO 5	Μ	S	Μ	S	S	Μ	S

S – Strong

M – Medium

L – Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3