

A.V.V.M SRI PUSHPAM COLLEGE (Autonomous),
POONDI – 613503, THANJAVUR (Dist)

Department of Computer Science

Education Ontology Development

User Guide for Protégé Tool

Education Ontology Development

Definition of Ontology

 In 1993, Gruber originally defined the notion of ontology as an “explicit

specification of a conceptualization”.

Concept of Ontology

 Ontology is the branch of philosophy that studies concepts such as

existence, being, becoming, and reality.

Importance of the study of Ontology in Education

 The ontology or an appropriate version of it can be used to guide students

to understand the organization of their own learning and to self- assess their

own progress. The ontologies are created by sets of people with expertise

in content, teaching, psychology, and measurement.

PROTÉGÉ TOOL

 Protégé is an ontology and knowledge base editor produced by Stanford

University.

 Protégé is a tool that enables the construction of domain ontologies,

customized data entry forms to enter data.

 Protégé allows the definition of classes, class hierarchies, variables,

variable-value restrictions, and the relationships between classes and the

properties of these relationships.

 Protégé comes with visualization packages such as OntoViz; all of these

help the user visualize ontologies with the help of diagrams.

CASE STUDY 1: TEACHING ONTOLOGY WITH C PROGRAMMING LANGUAGE

This case study demonstrates how to create ontology for the domain of “C

Programming Language”.

C is a robust language whose rich set of built-in functions and operators can be used to

write any complex programs. Programs written in C are efficient, fast and highly portable.

Its strength lies in its built-in functions. It is well-suited for structured programming. It has

the ability to extend itself. The specific characteristics are low-level access to computer

memory by converting machine addresses to typed pointers, functions, structures, unions,

I/O string manipulation, files and mathematical functions. Figure describes this scenario

through a class diagram.

Scenario of C programming language through a class diagram.

Identifying the Activities to Build C Teaching Ontology

 To build a C teaching ontology, the following activities are required:

 Activity 1: Identification and Creation of Classes and Subclasses

 Activity 2: Identification and Creation of Object Properties

 Activity 3: Identification and Creation of Datatype Properties

Activity 4: Defining Disjoint Classes

Activity 5: Specify Property Characteristics

Activity 6: Assign Domain and Range

Activity 7: Identify and Create Instance or Individual

Activity 1: Identification and creation of classes and subclasses

Identified classes and subclasses are shown in Exhibit 1.1.

Exhibit 1.1 Identified classes and subclasses.

Activity 2: Identification and creation of object properties

Identified object properties are as follows:

� hasPart
� isPartOf

� hasType
� isTypeOf
� has Array
� isArrayOf

They are shown in Exhibit 1.2.

Exhibit 1.2 Identified object properties.

Activity 3: Identification and creation of datatype properties

Identified datatype properties are as follows:

� hasSubscript

� isSubscriptOf

They are shown in Exhibit 1.3.

Exhibit 1.3 Identified datatype properties.

Activity 4: Defining disjoint classes

In the class definition, the classes “pointers” and “Structures and Unions” should be defined
as Disjoint Classes and is shown in Figure 1.21.

Activity 5: Specify property characteristics

Ontology permits the meaning of properties to be improved through the use of property
characteristics. Following are the different property characteristics:

� Functional
� Inverse Functional
� Transitive
� Symmetric

� Asymmetric
� Reflexive

� Irreflexive

Functional: The “hasArray” property should be assigned functional characteristic. It is shown in
Figure 1.22.

Figure 1.21 Disjoint Classes—Pointers, Structures and Unions.

Figure 1.22 Functional characteristic—hasArray.

Inverse functional:The “hasPart” property should be assigned Inverse functional characteristic. It is
shown in Figure 1.23.

Figure 1.23 Inverse functional characteristic—hasPart.

Transitive: The “hasType”property should be assigned Transitive characteristic. It is shown in
Figure 1.24.

Figure 1.24 Transitive characteristic—hasType.

Symmetric: The “isArrayOf” property should be assigned Symmetric characteristic. It is shown in
Figure 1.25.

Asymmetric: The “isPartOf” property should be assigned Asymmetric characteristic. It is shown in
Figure 1.26.

Reflective: The “isTypeOf”property should be assigned Reflective characteristic. It is shown in Figure
1.27.

Figure 1.25 Symmetric characteristic—isArrayOf.

Figure 1.26 Asymmetric characteristic—isPartOf.

Figure 1.27 Reflective characteristic—isTypeOf.

Activity 6: Assign domain and range

Properties may have specified domain and range. Properties link individuals to individuals (from the domain
and the range). For example, in this domain ontology, the property isPartOf would probably link individuals
belonging to the class of OneDimensionalArrays to individuals belonging to the class of TwoDimensionalArrays.
In this case, the domain of the property ‘isPartOf ‘ is OneDimensionalArrays (Figure 1.28) and the range is
TwoDimensionalArrays (Figure 1.29).

Figure 1.28 Property domain view—OneDimensionalArrays.

Figure 1.29 Property range view—TwoDimensionalArrays.

Activity 7: Identify and create instance or individual

Identified individuals or instances are shown in Table 1 .7.

Table 1.7 Identified Individuals

Classes Instances

Constants PI constant

Data types Integer Data type, Float Data type, Character Data type

Logical Operators AND Operators, OR Operators, Not Operators

Structure Defining a structure Initializing a structure

Pointers Defining a pointer Initializing a pointer

Arrays Defining an Array Initializing an Array

	Activity 1: Identification and creation of classes and subclasses
	Activity 2: Identification and creation of object properties
	Activity 3: Identification and creation of datatype properties
	Activity 4: Defining disjoint classes
	Activity 5: Specify property characteristics
	Activity 6: Assign domain and range
	Activity 7: Identify and create instance or individual

