A.Y.V.M SRI PUSHPAM COLLEGE (AUTONOMOUS),
POONDI - 613503, THANJAVUR (DIST)

Department of Computer Science

EDUCATION ONTOLOGY DEVELOPMENT

User Guide for Protégé Tool

Education Ontology Development

Definition of Ontology

» In 1993, Gruber originally defined the notion of ontology as an “explicit
specification of a conceptualization”.

Concept of Ontology

» Ontology isthe branch of philosophy that studies concepts such as

existence, being, becoming, and reality.

Importance of the study of Ontology in Education

» The ontology or an appropriate version of it can be used to guide students
to understand the organization of their own learning and to self- assess their
own progress. The ontologies are created by sets of people with expertise

in content, teaching, psychology, and measurement.

PROTEGE TOOL

» Protégé is an ontology and knowledge base editor produced by Stanford
University.

» Protégé is a tool that enables the construction of domain ontologies,
customized data entry forms to enter data.

» Protégé allows the definition of classes, class hierarchies, variables,
variable-value restrictions, and the relationships between classes and the
properties of these relationships.

» Protégé comes with visualization packages such as OntoViz; all of these

help the user visualize ontologies with the help of diagrams.

CASE STUDY 1: TEACHING ONTOLOGY WITH C PROGRAMMING LANGUAGE

This case study demonstrates how to create ontology for the domain of “C
Programming Language”.

C is a robust language whose rich set of built-in functions and operators can be used to
write any complex programs. Programs written in C are efficient, fast and highly portable.
Its strength lies in its built-in functions. It is well-suited for structured programming. It has
the ability to extend itself. The specific characteristics are low-level access to computer
memory by converting machine addresses to typed pointers, functions, structures, unions,
I/0O string manipulation, files and mathematical functions. Figure describes this scenario
through a class diagram.

Predefined
Constant

is a
User Defined
Constant
Arithmetic
Operators
Logical
Operators
Relational
Operators
Bitwise
Operators
Assignment
Operators
Special
Operators

Increment and Decrement
Operators

IF Else
Statement

Nested IF Else
Statement

Branching
Statements
s a
Looping
Statements

Control
Statements

Do_While Loop
While Loop

Single Dimensional Array

Multi Dimensional Array

Isa

No Argument and
No Return Values

Argument and
Return Values

No Argument and
Return Values

Arguments and
No Return Values

Function Within Structure
Arrays Within Structure

Pointers Within Structure

Structure and union

isa

Scenario of C programming language through a class diagram.

Identifying the Activities to Build C Teaching Ontology

To build a C teaching ontology, the following activities are required:

Activity 1: Identification and Creation of Classes and Subclasses
Activity 2: Identification and Creation of Object Properties
Activity 3: Identification and Creation of Datatype Properties
Activity 4: Defining Disjoint Classes

Activity 5: Specify Property Characteristics

Activity 6: Assign Domain and Range

Activity 7: Identify and Create Instance or Individual

Activity 1: Identification and creation of classes and subclasses
Identified classes and subclasses are shown in Exhibit 1.1.

) C_Tokens
») Constarts
() Datstypes
O Variables
p) Operators
O Keywords
) Cortrol_Statements
p») Branching
» 0 Looping
) Arrays
) Single_Dimensional
) Multi_Dimensional
@ Functions
p») Pre_Defined_Function
») User_Defined_Function
) Pointers
) Arrays_Within_pointer
) Functions_within_pointer
) Structure_within_Pointer
@ File_within_pointer
) Files
@ Input_file
) Output_file
@ Structure_and_Union
O Array_within_structure

Exhibit 1.1 Identified classes and subclasses.

Activity 2: Identification and creation of object properties
Identified object properties are as follows:

hasPart

isPartOf

hasType

isTypeOf

has Array

isArrayOf

They are shown in Exhibit 1.2.

Oooooon

v--mtopObjectProperty
-~ mmhasArray
= hasPart
® hasType
misArrayOf
misPartOf
®isTypeOf

Exhibit 1.2 Identified object properties.

Activity 3: Identification and creation of datatype properties
Identified datatype properties are as follows:

[0 hasSubscript
O isSubscriptOf
They are shown in Exhibit 1.3.

V- mtopDataProperty
® isSubscriptOf
@ hasSubscript

Exhibit 1.3 Identified datatype properties.

Activity 4: Defining disjoint classes
In the class definition, the classes “pointers” and “Structures and Unions” should be defined
as Disjoint Classes and is shown in Figure 1.21.

Activity 5: Specify property characteristics

Ontology permits the meaning of properties to be improved through the use of property
characteristics. Following are the different property characteristics:

Functional

Inverse Functional
Transitive
Symmetric
Asymmetric
Reflexive
Irreflexive

OooOooOoono

Functional: The “hasArray” property should be assigned functional characteristic. It is shown in
Figure1.22.

Description: | Structures-and-Unions =[ofe)

I

SubClass Of

SubClass Of (4nonymous Ancestor)

Members

Target for Key

Disjoint With

¥ H.Pointers

Disjoint Union Of

-

Annotations | Ussge
Usage: | Structures-and-Unions = [0fe)

Show: (v this|v| disjoints[| named sub/superclasses

~ Found 3 uses of I.Structures-and-Unions
¥ @ H.Pointers

@ H.Pointers DisjointWith 1.Structures-and-Unions

¥- & LStructures-and-Unions
@ H.Pointers Disjointwith 1.Structures-and-Unions
@ 1o LStructures-and-Unions

Figure 1.21 Disjoint Classes—Painters, Structures and Unions.

- amnetstons-nasaay DeEG)
(= =[]
¥ mtopObjectProperty Soestations. [=]
- mhasArray ™_pl
‘mhasPart h:‘nrﬂy[
‘™ hasType
misArrayOf v_sg
‘misPartOf
misTypeof hashmays
TV vy
hasArayed

|21 | Eauivaiene o [~
] inverse tunctional
b SubProperty Of
) = topObjectProperty
["] Symmatric :_ -
] Asymmetric Inverse ¢
] Retexive = isArrayOf
L] krefexive - =

Figure 1.22 Functional characteristic—hasArray.

Inverse functional:The “hasPart” property should be assigned Inverse functional characteristic. It is
shown in Figure 1.23.

Object property hierarchy: hasPart

e[e][]

¥ mtopObjectProperty JR—

TV_pl
mhasTh hasPart
™V_sg
misPartOf iy
wisTypef hasParts
TV_vbg
hasPartzd

Description: hasPart [EEE]

| Functional &l | || equivalent T
Inverse functional

Transtive

Symmetric .
| Asymmetric misPartOf
Reflexive.

[
refiexive. v

S TuinDimancionalf s

[T

Figure 1.23 Inverse functional characteristic—hasPart.

Transitive: The “hasType”property should be assigned Transitive characteristic. It is shown in
Figure 1.24.

Oject property hierarchy: hasType

=z x)

¥ mtopObjectProperty

misArrayOf v_s9
::::"m;' hasTypes
g

hasTyped

[mverse functional

[# Transtive |
[symmetric —— 1
[asymmetrie misTypeOf
| Refexive

|1 reteive -

Figure 1.24 Transitive characteristic—hasType.

Symmetric: The “isArrayOf” property should be assigned Symmetric characteristic. It is shown in
Figure 1.25.

Asymmetric: The “isPartOf” property should be assigned Asymmetric characteristic. It is shown in
Figure1.26.

Reflective: The “isTypeOf”property should be assigned Reflective characteristic. It is shown in Figure
1.27.

property hierarchy- isArrayOf

[=]=][x]
¥ mtopObjectProperty
mhasArray

‘= hasPart
= hasType
-

isArrayOf
mispartof
= isTypeOf

L] Functienal 21| || epvaiens To
[inverse tunctionsl
[Transtive

I Refiexive

| L rrefexive. =

Figure 1.25 Symmetric characteristic—isArrayOf.

obs poper, herwen penn e e —

==

¥ mtopObjectProperty
= hasArray

Obfec ropery heroch
[=[=][x]
v ®topObiectProperty

P—
™l
isTypeOl
Tv_sg
sTypaOts
TV_whg
isTypeOled

1 Inverse Of
| Asymmetric = hasType
Reflexive
Oumais fréersaction
bt B

Figure 1.27 Reflective characteristic—isTypeOf.

Activity 6: Assign domain and range

Properties may have specified domain and range. Properties link individuals to individuals (from the domain
and the range). For example, in this domain ontology, the property isPartOf would probably link individuals
belonging to the class of OneDimensionalArrays to individuals belonging to the class of TwoDimensionalArrays.
In this case, the domain of the property ‘isPartOf * is OneDimensionalArrays (Figure 1.28) and the range is
TwoDimensionalArrays (Figure 1.29).

Description: isPartOf MEEH
Equivalent T
ubProperty Of
Inverse
= hasPart

Dor intersection

@ OneDimensionalArrays

Figure 1.28 Property domain view—OneDimensionalArrays.

Description: isPartOf DEEE

Equivalent To

ubProperty 0f

Inverse Of

m hasPart

Domains (intersection

Ranges (intersection)
@ TwoDimensionalArrays

Disjoint With

uperProperty Of (Chain

Figure 1.29 Property range view—TwoDimensionalArrays.

Activity 7: lIdentify and create instance or individual
Identified individuals or instances are shown in Table 1.7.

Table 1.7 Identified Individuals

Classes Instances
Constants PI constant
Data types Integer Data type, Float Data type, Character Data type
Logical Operators AND Operators, OR Operators, Not Operators
Structure Defining a structure Initializing a structure
Pointers Defining a pointer Initializing a pointer
Arrays Defining an Array Initializing an Array

	Activity 1: Identification and creation of classes and subclasses
	Activity 2: Identification and creation of object properties
	Activity 3: Identification and creation of datatype properties
	Activity 4: Defining disjoint classes
	Activity 5: Specify property characteristics
	Activity 6: Assign domain and range
	Activity 7: Identify and create instance or individual

