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Unit - I: Curves

Sec: 1.1: (Curves in space

A curve in space is the motion of a point under certain conditions. Here we use
the rectangular Cartesian coordinates (X, v, z) or (X1, X2, X3).

One method of representing the curve in the space is the parametric form.
Xi=fi(u),i=1,2,3, ... Where u is a parameter.

(i.e) x1 = fi(u), x2 = fz(u), x3 = f3(u) (or) x = fi(n), y = f2(u), z = f3(u)

Another way of representing a curve in space is the intersection of two curves
Fi(x,y,z) =0 and F2(x, y, z) = 0 (or) y = f1(x), z = f2(x)

The intersection of the sphere and the plane is a circle in space.

The equation of the sphere F1 = x* + y* + z — 9 = 0 and the plane
F2=2x+ 3y — 5z + 4 = 0 represents a circle in space.

(e.g.) Xi=ai+ubi,i=1, 2, 3,... represent a straight line in space.
] M X1—a@ X72—0@a X3—0a
This can be written as =— = === ==
bl bz bg
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Arc Length and Tangent:

Suppose that the curve ¢, x = x(u) is real with real parameter u. Then we can
express the arc length of a segment of a curve between A(uo) and P(u) by means of the
integral

S(u) = ;::}))xff .x du where x = E

= [, VX% + ¥* + Z%du

The arc length S is increasing with increasing u. The sense of increasing arc
length is called the positive sense on the curve. A curve with a sense on it is called an
oriented curve.

We have ds? = dx? + dy? + dz?
= dx. dx

Now divide by ds*, we get,

dx dx dx ., .
= — 1S a4 unit vector.

ds ds’ ds
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The vector AX joins two points P(x) and Q(X + AX) on the curve c. The vector E has the

same direction as Ax and As — 0. i—z gives tangent vector at the point p.
5

dx d%
d—: gives the direction of tangent at p. Thus d—: is the unit tangent vector. It is denoted
by t.

Note: 1

dx dx du = du -

— = —.— = X.— Wwhere X is a tangent vector.
ds du ds ds

Note : 2

A tangent at a point on a curve is a straight line passing through two consecutive points
on the curve.
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Theorem: 1

The ratio of the arc and the chord connecting two points P and Q on a curve approaches
unity when Q approaches P.

Let As be the length of the arc PQ and C be the length of the chord PQ.
Then PQ=C=/(x +Ax —x)2+ (y + Ay — y)%2 + (z + Az — z)? ¢ A5
= JAx2 + Ay? + Az?

e Jalioyiias
Divide both Numerator and Denominator by Au on the RHS

As _ As 1
c Au’ Z Z 2
JE) -+ @)+ 3

Taking limit on both sides. we have
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Hence the proof.

Nofe:

We have the unit tangent vectors as & = Cosa,e; + Cosaye, + Cosaze; Wwhere

€1, €2,e; are unit vectors along the coordinate axis, Cosa,, Cosa,, Cosa; are the
cosine of the angle made by the tangent vector with the positive direction of the x axis.
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Equation of Tangent:

A generic point A(X) on tangent line at P is determined by the equation X = X +
vt wherev = PA.

Xi—xi . Xz—xz . X;—x;

The equation of the tangent line is given by

dxq o dxg T dxg

ds ds ds
(i.e.) X1—x1 _ Xz—x2  X3—x3
o Cosaq Cosaz Cosay

Problem : 1

Find the equation of the tangent line to the circle x = a cosu, y = a sinu and z = o.

Solution:

The equation of the circle is given as X = a cosu, y = a sinu and z = o with centre
at 0 and radius a.

dx___ . dy___ c ddz—'—ﬂ
E—x——asmu, T = a Cosu an E—z—
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) - (@) (@) (B
du du du du
= (-a sinu)? + (a cosu)* + 0

= alsin*u + a*cos*u = a?

(@) =a
ds =a du

Integrating, we get, [ds = [adu

§=au+c
Take ¢ =0, we get, s = au

=S w1
a ds a
Now the unit tangent vector at any point on the curve is given by
_  (dx dy dz
t= (ds'ds'ds)
dx du dy du dz du
a (du' ds’'du ds’ du ds

= (-sinu, cosu, 0)
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The equation of tangent is given by
X—x Y-y Z-z

d - d - d
x/ds y/ds z/ds

X—acusu_ Y — asinu Z—0

—sinu cosu 0
X — acosu Y — asinu
(i.e.) - =
—sinu cosu
®Problem : 2
Find the equation of the tangent to the circular helix,
Proof-

The equation of the circular helix is given as x = a cosu, y = a sinu and z = bu

where a and b are constants.

dx_._ . dy___ p ddz—'—b
E—x——asmu, Tu = a Cosu an E—z—

@) - @)+ @)+ @
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ds\>
(E) = (-a sinu)? + (a cosu)* + b?
= a’sin’u + a*cos’u + b?
= ¢? where ¢ = a* + b?
(ds) o
—)=c
du
ds = ¢ du
Integrating, we get, [ds = [cdu
s=cu+d
Take d =0, we get, s = cu

Now the unit tangent vector at any point on the curve is given by

f_(.d:m dy dZ)
~ \ds’'ds’ds

B (dx du dy du dz du)
- \du'ds’du’ ds’du ds

o . 1 1 1 —-a . a b
—(—IISIHH.—, acosu.— , b—) = (—Slnu,— EGSH,—)
c c

a e c c
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The equation of tangent is given by
X—x Y-y Z-z

dx/ ds dy/ ds dz/ ds

X —acosu B Y — asinu Z — bu

_a sinu - acﬂsu
c C

oS

(i.e.)

X—acasu_ Y — asinu _Z—bu

—asinu acosu b

Definition: Surface of degree K

The surface is of degree k if it is intersected by a line in k — points.
Definition: Space curve of degree k,

The space curve is said to be of degree k if it is intersected by a plane in k — points.
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Sec: 1.3

Definition: Osculating plane
The osculating plane is a plane at a point on a space curve which is a limiting position
of 3 consecutive points on the space curve, when two of the points coincides with the third.

Derivation of the equation of osculating plane

-—

LR
L)
. Pluts)

—

=z

If X is any point on the plane passing through 3 consecutive points P(uo), Q(u1), R(u2),
then the equation of the plane is given by X.@ = p where @ is perpendicular to the plane and
p is a constant.

Let the plane be passing through three points P, Q, R on the curve given by
X =%(uy), X = x(uy), X = x(u,)

then the function f(u) = X.@ — p where X = x(u) satisfies the condition f(uo) = 0, f(m) = 0,

f(uz) = 0.
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According to Roll’s theorem, we get f'(u3) =0, (W) =0, wo < w3z <u1, m £ W < W2
Again applying Roll’s theorem, we get f''(us) = 0, uz < us < ug4
when Q and R approaches P, we get, ui, uz, us, u4, us — uo.

Taking uwo = u, we obtain, for the limiting values of @ and p, the condition f(u) = 0, f'(u) = 0
and f'"(n) = 0.

je)xa— p=0,x.a=0,x.a = 0.
Eliminating @ from the above equation, we obtain a linear relationship among X — %, X, X.
(i.e) X — x = Ax + ux
X = x+ Ax + px where A and p are constants.

We can write X = ¥+ AX + pX in determinant form

Xy —x; Xy—x; X3—2x5

Since X; — x4, X, X are coplanar, we have [X — X, X, X.|=0.

This is the equation of the plane passing through 3 consecutive points. This equation is
known as osculating plane.
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Note : 1
The equation of the osculating plane passes through 3 consecutive points on the space

curve.
Note : 2
It also passes through a tangent line given by X = x + Ax.
Note ; 3
The osculating plane is not determined when x =0 orxis proportional to X
Problem:3
Find the equation of osculating plane to the circular helix at any point.
Proof-

The equation of the circular helix is given as x = a cosu, y = a sinu and z = bu where a

and b are constants.

. . d . dz .
=x=-—asinu, ==y=aCosuand —=z= b
du du

=&

x=-—aCosu,y= —aSinu,z=0.
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Equation of osculating plane is given by
X—x Y-y Z—-z2

X y z =0

X —acosu Y —asinu Z-— bu
—asinu acosu b |=0
—acosu —asinu 0

(X — acosu)(0 + asinu.b) — (Y — asinu)(0 + acosu.b) + (Z — bu)(a3sin*u + a*cos*u) =0
X. asinu. b - azsily,nﬁsu.h —Yacosu.b + Elzsi]l}[éﬂl.h +za*—bua’=0
a[bXsinu — bYcosu + az—abu] =0

(i.e.) bXsinu — bYcosu + az = abu

Sec: 1.4 Curvature
Definition: Principal Normal
The line in the osculating plane at a point perpendicular to the tangent to the space

curve is called principal normal. The unit vector along the principal normal is denoted by n.
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Derivation of curvature

Let the given curve be c represented by x = x(s), where s is the arc length. Then £ =

? is the unit tangent vector.
5

Wehavet.t =1

Diff. w.r.t. s, we have

tt+t.t=0=>2t'.t=0 =>t.t=0
(i.e) t' is perpendicular to t.

Diff. this equation again w.r.t. s, we have

E _d {;du}
ds ds

. d .’I du —_— d (
ds n',s ds
o dx du _ du " E d2u
du ~ds ds ds?
(_)2 —_ d u
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r

- —_— _ - -1
t is the linear combination of X and x . Therefore t lies in the osculating plane. Hence t and

principal normal vector n are parallel.
~ t = kn, where K is scalar.

If we denote t as E, then

k = k.7 where k is called the curvature vector.
The curvature vector expresses the rate of change of tangent, when we proceed along the

curve.

|k| = K is called the length of the curvature vector.

Definition: Osculating Circle

It is a circle passing through three consecutive points of the space curve whose radius

is the absolute value of the radius of curvature of the curve.

f " e

Note: k2= k .k =T .T =% .%

. L _ 1
Here the radius of curvature is given by R = k™1 = -
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Theorem: 1.4.1 (Derivative of the osculating circle)

The centre of the osculating circle lies on the principal normal at a distance |R| and R
is the radius of the osculating circle.
Proof-
We observe that the osculating circle lies in the osculating plane. The circle can be
determined as the plane of intersection of osculating plane and a sphere.
The equation of the sphere is given by (X —¢).(x — ¢) = r%, where X is the generic
point, of the sphere, € is the centre and 7 is radius.
This sphere must passes through three points, P, Q, R on the curve given by
X=X(S9),X= X(51), X = X(5)
The vector X — ¢ lies in the osculating plane.

Let f(s) = (x—0).(x—¢) — r°.

Then for limiting values of ¢ and r, we must here
f(s)=0,f(s)=0,f(s)=0
fs)=0=>F-0O.&x—0)—1°=0 —[1]

Dr. A. Venkatesh, AVVMSPC 18



f(s)=0= (E'—O)(E—')Jr(f—_)(?—{}) — 0
IE-9O+XTE-9=0
2X(xX-0) =0
E-9=0 — 2]

f'(9)=0>FT'F-0)+x.XT =0
X'x-C)+tt=0
T(x—c)+1=0

¥ (x—¢c)=-1 — [3]

Since (x — ) lies in the osculating plane,

We can write (x —¢) = A< + _uE" — [4]

where A and g are constants which are determined by the equations [1], [2] & [3].
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Take dot product with X in equation [4], we have

F-OF = XX + 4% .x
0=A1.t+ ,uf'.f (by equation [2])
0=41)+u0) 24=0

Take dot product with X" in equation [4], we have

Ir

X—-0)x =AXX +ux .x
1=Att + uk? (by equation [3])

1=40) +pk* =p= <

=n&-=R.

x| %1,
==

+ Rn where

&l
|
=1

Dr. A. Venkatesh, AVVMSPC
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Sec: 1.5 Torsion

The curvature measures rate of change of tangent when moving along the curve. We

shall now introduce a quantity, measuring the rate of change of osculating plane.

For this purpose, we infroduce a normal at any point to the osculating. It is known as

binormal. It is denoted by b.

We may definebasbh =T X 7.

Now t , m, b satisfy the following relations

-l
The rate of change of osculating plane is represented by b = y

This vector lies in the direction 6f thié principAt formal.

db
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Derivation of Torsion

We know that b.T = 0

Diff with respect to ‘s’, we get

—1_

——
b.t+b.T =0
b .t+b.kn =0

- -
=b .t=0 [

=
Sl
4

— —_
(i.e.) b is perpendicular tot — [1]

Now b.b =1
Diff with respect to ‘s’ we get

—1 —_—

b .b+b.b =0
25.5=0
—1 —
(i. e) b is perpendicular to b. ———— (2)

from (1) & (2), we have b is perpendicular to both t and b.
—1
~ b lies in the direction of 7.
—1
We can write b = -tn, for Sﬂlﬂ%ﬁ'ﬂtiér%?eamms&f call this T as torsion of the curve,



Note:

T may be positive or negative just like a curvature.

Derivation of expression for T
Consider t=(-n) (-tn)
= (1) )

__ d(t x7)
=(n)—

- @ X 2} —[1
Now x"(x'X x")'=x"{x"Xx"+x' X x"}
=x"{0+x'x x"}
={x"x,x"}

=[x, x", x"

- - -Ii.r; x_"' i”’r ﬂ‘]‘"
sub. this in (1), we get |T = —————

'I':

K. A. Vénkatesh, 4

—I
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x,x", x"

— 1

X
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Expression for curvature of torsion in terms of the Parameter U is

k2= (x:ﬂ-ix)j [_Kq)
(¥xx)3

III

- (xx:r).(_x_')

Problem: 1

Find the curvature and torsion for the circular helix
Solution:

Equation of the Circular helix is X = (acosu, asinu, bu)

Take u=s/c where c¢=+/a’+ b?
X = (acns (f),asin G) ,b.%)
* = [-asin(2).(0) acos (3). (2) 2
= :——5111( ) cns( )

-
= rr __ 4 o S
x = E_BSHI ; J_c_:]cns E‘ \Q; katesh, AVWMSPC
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Note:

At all points of the circular helix the curvature and torsion are constant.

Problem: 2

Find the curvature & torsion for the carve x =u, y=u? z=u’
Solution:

Given x = (u,u? u’)

x = (1,2u,3ud)

x = (0,2,6u)
X =(0,0,6)
L. t j k
xXXXx=|1 2u 3u’
0 2 6u

= i[12u? — 6u?] — j[6u — 0] + k[2 — 0]
= 6uU’l — 6uj + 2Kk
X x ). (X x %) = (6u%l — 6uj + 2k)(6u%l — 6uj + 2K)
= 36ut +36u’+4

= 4(9u* +9u? + 1)
Dr. A. Venkatesh, AVVMSPC
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%.%) = (1,2u,3u?)(1, 2u, 3u?)

=1+ 4u?+ 9u?

(%%)°= (9u* + 4u? + 1)°

Curvature is k2 = (Exf]}:_ixz)
(xxx)
4(9ut+9u?+1)
a [91:,‘1'+ 4ul+ 1)3
gut+oul+1
- iz\/(9154+4uz+1)3
ST 1 2u 3u?
xxx]=[0 2 6u
0 O 6

— 1(12 — 0) — 2u(0) + 3uZ%(0) = 12

X, X, X

T (ExF).ZExD)

T

12 3

4(9ut+9u?+1) B (Qut+9u?+1)

Dr. A. Venkatesh, AVVMSPC
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®Problem: 3

. . 1+u
Find the curvature & torsion for the curve x = u, y =—,
u

Solution:

v 14+u 1-u?
Given x=u, y=—, z =—

u u

(i.e.) x = u, y=1+1, z=2—u
u

u

f=(u, = +1, i—l)
- 1 1
xz(l,—;,—u—z—l)
xe 2 2

X :(0, = 3

P k
1 1
xxx= |1 ——5 ——=—1
2 2
0 = =
2 2 2 =| 2 75 2
= 7|-2+Z4+2]|- [—]+k[—]
11,5 'H'E H3 1!,3 'H,3




u3 us ul us us
4 £ 4 12
u® u® u® u®
IR 1 1 1 1
GH=-(1-z =)z =
1 2
—1+—+—+1+—
ut | out 2
. 2ut+242u? . 2{H4+H2+1)
ut ut
3
I | o B(H4+H2+1)
(x' .I) o w12
(%)
ud.
xxxllxxx g(ut+u+1
Curvature k? = ZDE3) _]( - ) _ — )
(x x u
. 12 “12 o 3 u'ﬁ
— "% S 3
u® ﬂ(u4+u3+1) 2 {u4+uz+1:]

w3

U

ol

I

+
ﬁ

3
(u* +ul+ I)E
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Ex%]=lo 2m® 2w |=1]-3+3 =0
0 -6/u* —-6/u*

{:x x,x

) . _ 0 _
Torsion Tt = (ﬂxHxM) i_z 0

~Tt=0
Problem: 4

Show that necessary & sufficient condition for a plane curve is T = 0 at all points.

Solution:

Necessalv:  Assume that the space curve is a plane curve.

Now this plane is the osculating plane at all points.

~. The binomial b is L, to the osculating plane.

= At all the points, b is fixed (constant)

db
L_o
ds

(ie)—TR=0

(ie) T=0 Gr AV D)h, avvvisec
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(Iunverselx:

Assume T = 0  at all points
(ie)—Tnn=0
. db
(i.e.) - 0

~ b is a constant vector.
Suppose the space curve is given by the equation X = X(s). Then

of .

(x.b) =% .b+ x.b

~ (x.b) = constant

x1l.b
- The position vector of all points on the space curve is L, to the constant vector b .

This is possible only when the curve lies on the plane and b is 1,. to the plane.

(i.e.) The space curve is a plane curve.

Dr. A. Venkatesh, AVVMSPC
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Sec: 1.6
Formulae of Frenet (or) Serret - Frenet Formulae

The formulae of Frenet are

i =kn

. dn = —
(ii) d_f = b — kt
(iii) % = —1Tn

Proof:

[ We have proved (i) in Sec:1.4 and (iii) in Sec: 1.5]

(i wkt n.n=1
Diff. w. 1. t *s°,

—

noa+n.mn=0
20 m=0

n =0

“n 1ln

~ 7' lies in the plane of b & .

(i.e.) ' can be written as a linear combination of  and b.
Dr. A. Venkatesh, AVVMSPC
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Let @ =a,; i+ a;b — (1) where a1 & a2 are Scalar.

Wkt t.n=0
Diff. w.r.t. °s’
t a+t.n =0
kn.n+ €. =0
k+ t.a' =0 c (A= 1)
i.n ' = -k — (2)
Take dot product with £ in equation (1)

(ie)a, = —k
wkt n.hb=0
Diff. w.r.t s’

_rl I

n .b+n.b=0
b+

n' n(—tn)=0
n .b—1=0
A .b=1t — (3) Dr. A. Venkatesh, AVVMSPC

33



Take dot product with b in equation (1)

(1)=> @' .b= a,t.b+ a,b.b

T= a,(0) + a, v by (3)
> a, =T
(1) =7 = —kt+ th

Note: Curvature & torsion are also known as 15t and 2*¢ curvature, respectively. The space
curve is known as curve of double curvature.
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Equation of the Osculating Plane:

The plane containing the tangent and principle normal is called an osculating plane.
It’s equation is given by (¥ —X).b =0

ﬂ Mormal plane
-
Rectifying \
N | A

mn

-
-~ D=sculating curve

Normal Plane:

It is a plane containing principal normal and binormal. It’s equation is given by
F—x).t=0

Rectifying Plane:

It is a plane containing binormal & tangent. It’s equation is given by (y — x) .m =0
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Sec: 1.7 Contact

Introduction:
Instead of stating that 2 curves having a certain number of points in commeon, we can
also state that they have a contact of certain order.

Contact:

(=

/} A

i

| Plud o

Let two curves X; and X, have a regular point P in common. Take a point A on X; near P.

Let AD be its distance to Z,. Then X, has a contact of order n with X, at P, when for 4 - P
along X, .

lim (;;K # 0 is finite for k = n + 1
But lim {j;k =0fork=mn
(ie.) AD = 0 ((AP)¥), k=1,2, ........ n
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Result:

Necessary and sufficient condition that the surface has a contact of order n at P with a
curve are that P, the following relation hold.

f)=0=f"(uw) == f*(w), f**V(u)#0
Proof:

Let £, be a curve given by x(u). Let X, be a surface given by F(x,y, z) = 0 where
F, F, F, not all zero.

we can make use of the fact that the distance AD of the point A(x,,y, z,) near P is of
the same order as F(x,,y,z,).

The function f(u) can be expressed as f(u) = F(x(w), y(u), z(u)).
[it is obtained by substituting x; of the curve £, on F(x,y, z)]

Let f(u) near the point P(u = u,) have finite derivatives f'(u),i=1,2,..,n+1

Thus if we take (u = uy) at A and (h = u; —u,) then 1 a Taylor development of
f(u) in the form

hﬂ,+1

i a,) + 0(h™Y),

h riu h* .,
f(ulJ - f(uo) +;f{ ) +;f (uo) + -t (nt1)!
Here f(u,) = 0. Because P(u,) is common to X; and X,, since P lies on X,, f(u,) is
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Hence we get a N and S condition for a curve has a contact of order n with the surface
at P as,

fw) =0=f'(w) == fw), f** V@) #0

Note:

1) IfX, is the curve x(u) and X, is the another curve given by F,(x,y,z) = 0 &
F,(x,y,z) = 0 then N & S condition for a contact of order n at P between the curves

are
frw)=0=f"=..=f"w) =0
f2)=0=f," = =f"()=0&

at least one of the 2 derivatives fgnﬂ)(u),fg"ﬂ)(u) does not vanish at P.

where fl (H) - Fl(x(u),y(u),z(u)) & fz(") - Fz(x(u): y(u),z(u))

2) The figure £, & X, have a contact of order n will have (n+1) consecutive points in
comion.

3) The tangent has a contact of order one with the curve.
4) The osculating plane & the osculating circle have a contact of order two with the

curve.
Dr. A. Venkatesh, AVVMSPC 38



Osculating sphere: Space

A sphere passing through Four consecutive points on a sphere curve is called the
Osculating sphere.

To find the centre of the osculating sphere:

The equation of the sphere is given by (E — E) (? — E) — 1% = 0, where X is the generic

point of the sphere, C is the centre and r is the radius.
Let f(s) = (x —¢).(x —¢) —1r* Where X is the specific point on the sphere.
Now the equation of the sphere becomes f(s) = 0.
To find the limiting values of € & ¥ we must have f'(s) =0, f"(s) =0,f"(s) =0
Now f'(s)=0= (" —0)(x—¢) + (E—_)(f — {}) =0 (vx =t)
=>2(x—0)t=0

=>x—-0c)t=0 (D
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f's)=0=>&F -0)t+x—0E=0
=>tt+(x—c)kn=0

21+(x—¢c)kn=0
=2>(x—-¢)kn=-1
=2(x—¢c).n= _?1
=2>(x—-c)n=—-R (2) where R

f"s)=0>& -0n+(x-°c)n' =R’

Eoll M

>tan+ (xXx—7°)(th—kt) = —R'
>0+x-¢)th—(x—-0)k.t=—R'
>&x—-c)th—0=—R' (-from (1)

:}(E—_)Ez—ﬂ?

>&-¢)b=-RT —— @)  v==T
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(1) gives (X —C) L, . ~X—Cliesinn&b

Let(x —¢) =a;.x+a,.b (4)

Take dot product with b in (4), we ge
b.(Xx—C)=a,.x.b+a,.b.b
—RT=0+a,.1 (~*by(3)
az — _RrT

Take dot product with nn in (4), we get

nx—-c)=a,n.n+ az b.m
—R=a,.1+ a,.0 by (2)
- a; = R
(4)>(x—¢c)= —Rn— R'Th

- C=X+Rn+ R'Th
This is the centre of the osculating sphere.

T = L =
When the curve is of constant curvature then P is a constant.

(i.e.) R=constant .. R'D=a@enkatesh, AVVMSPC
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Now centre of the osculating sphere becomes ¢ = x + R n which is the centre of the
osculating circle.

Thus, we have “when the curve is of constant curvature, the centre of the osculating
sphere coincides with the centre of the osculating circle”.

Note: 1 The osculating sphere has a contact of order three with the curve.

Note: 2 The radius of the osculating sphere is 7 = /RZ + (R"'r)2

Sec: 1.8 Natural Equation

An equation of the curve in the form X = x(u) depends on a coordinate system. An
equation to the curve which does not depend on such a coordinate system is referred to as

natural equation (or) intrinsic equation

A natural equation to the curve can be given in the form k = k(s), where k is the
curvature & s is the arc length. It is possible to change from natural equation to an ordinary

equation and vice versa.
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Fundamental Theorem for space curve

If two single valued continuous functions k(s) & 7 (s),s > 0 are given then 3 only

one space curve determined, for its position in space for which s is the arc length, k is the
curvature and t is the torsion.

Proof:

1.

Analvtic Proof:

Assume that the given functions k(s) & 7 (s) are analytic. Then the neighbourhood of
the point s = s,, we can use Taylor expansion for x(s).

Take h = s — s, then for the interval s, < s < s,,
] 2 n
%(s) = %(So) + =% (So) + =X () + -

Using the formula of Frenet,

xX'=t x"=t=kn x " =k'n+k(th—kt) = —k*t+ k"n+ kb
Using these values in x(s), we have
2 3
X = 7 —_— =k + —(—Kk2T ' b
x(s) = x(sq) + T t+ > kn + 2 ( k t+kn+k1‘b)+
Here all the terms on the R.H.S exists, since the functions k(s) & 7 (s) are analytic.

Thus x(s) is uniquely determined in terms of X(so),, 7, b at s = s,

Thus, the curve is uniquely determined exeept\forsa position in space. 43



2.

Non- Analvtic Proof:

Suppose the analyticity of k(s) & T (s) are not assumed. Consider the system of 3
simultaneous diff. equations of first order in a, B, y as follows

= kB, == v — ka, ———Tﬁ} (1)

From the theory of differential equations, when k & t are single valued functions in
the given interval, the above differential equations have a unique set of solutions, which
assume given values for the arguments.

Using this results, we can find a unique set of solutions a,(s), f,(s),y¥,(s), this
solutions assumes the specific values (1, 0, 0) for s = s,.

(i.e.) a;(so) =1, P1(so) =0, y1(s0) =0
/1" az(sg) =0, P2(so) =1, v2(s0)=0
az:(se) =0, PBi(sa) =0, va2(sa) =1
Now, the system of differential equation given by equation (1) lead to the following

result
1d da, ﬁl dy,
2 AT __{zal(d )+ 28 (55) +on (35)
2{a,kB, + B,(zry; — ka,) + v,(—1,) }

= ay kf, + BTy, — Brka; — yv,1fy =0
. yA L Dr. A. Venkatesh, AVWMSPC 44
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Ats=55, a; =1,,=0,y,=0,1+04+0=c 2c=1
Hence a3 + B3 +y3 =
0y az + B3 +vy; =
as+P5+vs =

Also aja; +B1f2+ Y1¥2 =1
aasz + Bafz+ v2v3 =1
asa; + BB, + vsv, =1
Thus we have found 3 mutually L, vectors, t(ay, az, a3),7 (B1, B2 B3). b (¥1, V2, V3)
where a;, B;,y; are functions of s.
Thus we have infinite number of trihedrons.
Now the equation X(s) = f; t ds determines a curve for which %,7, b as moving
trihedrons, k & T being its curvature & Torsion and s its arc length.

Hence 3 a curve ¢ with a given curvature & torsion. We prove this curve is unique.
For this, suppose that there is another curve ¢ with same k(s) &  (s).

We will bring the curve ¢ to coincide with c. For this let us move the point s = 0of c
to the point s = 0 of ¢, such that at this point £, ﬁ,ﬁ coincide with ¢, ﬁ,E of ¢ & choose this
as coordinate axis.

Dr. A. Venkatesh, AVVMSPC 45



Let (x; a; B:7v:) & (X;, a;, B;,¥;) denote the corresponding elements of moving
trihedron of ¢ & c respectively.

This system of (1) hold for «a; f;, y; and &i,j_?i, ¥Y; - Now

(e pB+yy) = a () +a(Z) +p(5) + () +r(3)+ 7(3)

ds
= akB +akp + B(ty — ka) + B(ry — ka) +y(—1B) +¥7(zB)
=0
. aa@ + Bf + yy = constant
Ats=sg, a=a=1, f=B=0,y=7=0

- The above equation gives
aa+ pp+yy =1
a;a; +B:p;i+v:i¥i=1 i=1,2,3,..
Also we have
QF+ BE v = 18a + BT =
= The vector (a;, B;,¥;) & (EI-, B ]7,3) makes zero angle with one another.

(e)a;,=a;, B; =B, Vi=V:
Dr. A. Venkatesh, AVVMSPC 46



d ,_
Hence V s, d—(x,; —x;)=0
5
X; — x; = constant
Ats=50,%;—x; =0 = x; = x;

Thus the curve ¢ can be made to coincide with curve c. Hence there is only one space
curve for the given k(s) & 7 (s).

Sec:1.9 Helices

The circular helices is a special case of large class of curves called the cylindrical

helices (or) helices (or) curves of constant slope. Helix is defined by the property that the
Let us assume that the curve be of constant slope. (i.e.) Let x = x(s) be a helix. Let @

be the unit vector along the fixed line I. Then by definition of helix,
Theorem:1.9.1

Necessary and Sufficient condition that a curve of constant slope is that the ratio of
curvature to torsion be constant.

Proof:

Let us assume that the curve be of constant slope. (i.e.) Let x = x(s) be a helix. Let @
be the unit vector along the fixed line [. Then by definition of helix,
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t.a—=cosa—= constant
Diff. w.r.t °s’,

(ie)ais 1, ton.

Hence a may be parallel to the rectifying plane.
. We can write

a= tcosa+ bsina
Diff. w.r.t °s’,

dﬁ Z _| L

— = t'cosa+ b'sina
ds
O0=kncosa—1t.nsina
(le)kcosa = tsina

k sina

- = tana = Constant.
T COSs @

k.
Thus for a curve of constant slope — is constant.

Dr. A. Venkatesh, AVWMSPC
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Conversely assume that X — constant at all points for a given curve x =Xx (s).

T
= tana (ais constant)

sin

Sl I

CoOs @

kcosa= tsina
Multiply by " on both sides, we get
kn cosa= tn sina
kn cosa— tnsina=0
>t lcosa+b tsina =0

di(t_CDSEI-FFSiHH) =0
g
t cosa + Fsin a — constant

(i.e)t cosa+ b sina=a [ @ is a constant vector)

Take dot product with t we get

ttcosa+l bsina=at =cosa=at
t @ = cosa = constant.
By definition of helix, the given curve x = x(s) is a helix.

(i.e) The curve is of constant slope,, , Venkatesh, AVWMSPC
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Theorem: 1.9.2

The Projection of a helix on a plane perpendicular to its axis has its principal normal
parallel to corresponding principal normal of the helix and its corresponding curvature is

k; =k cosec’a

Proof: -
If we project the helix x (s) on a plane perpendicular to @, then the projection x; (s)

has the equation

X1 =x—-(x-a)a

Now diff w.r.t°s’, we have

=t —(cosa)a — [1]
Now they arc length in x; is given by
ds,” =dx;.dx;

—(t — cosaa@ )(t — cosaa )ds? (since by [1]

{tt-tcosaa-tcosaa +cos’aa a }ds?
d
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= {1 -2 cos*a + cos*a } ds*

ds,* = {1-cos*a} ds*
ds,” = sin*a ds?
(i.,e)ds; =sinads — [2]

NOW dx;  dx; ds

-

dsq ds dsq

=(t —cosaa) —_

S51n @

=(t —a cosa) .cosec a

Again diff with respect to s;, we have

5 = dt cosecx
ds12  dsy

= ﬁ cosec a (Since by [2]

z —
cosec“a =tcosec’a

ds
k,x =k X cosec’* a

k, = k cosec® a
Dr. A. Venkatesh, AVVMSPC
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Example -1 Circular Helix

If a helix has a constant curvature, then its projection on the plane perpendicular to its
axis is a plane curve of constant curvature, hence a circle. The helix lies on a cylinder of
revolution and is therefore a circular helix.

Example-2 Spherical helix

A spherical helix projects on a plane perpendicular to its axis in an arc of an
epicycloid. If a helix lies on a sphere of radius r, then we have the equation R? + (R'T)%? = r?

. Lk
where r is a constant with —= constant = tano.
T

The above equation together with k = 7 tan a, gives after eliminating of 7.

r2 = R2(1+R” tan’a )

2 2
r~— R
=R tan’a
RZ
—R2 \/ 2 2
(i.e) + —=VR  tan“a
R
r2—Rr? R
+ > =—tana
R 5
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ds RdAR

—|— —
T tana Wi —R2
RdR
——= +cotads
N
1 d(+*—R?
— - u = +cotads
2 r2_R2

Integrating we get

-Vrz —R?Z2 =+ scota

Squaring,
— R? =5% cot’a

r2 = R? + 5% cot’a

z _ Rz SI'H, i 4 Sz Cﬂszﬂ'

SIHE'{I sin‘a
2 RZsin‘a+s’cos’a
T : - z
sin“a

r’sin‘a = R%sin*a + s*cos*a
Multiply by sin“a we get

r’sin*a = R?*sin*a +s? sin*a cos?

Dr. A. Venkatesh AVVMSPC
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We know that
k, = k cosec* a
R, =Rsin*«a
R,* = R? sin‘a - [2]

and
§$,=Ssina
5,2 = 5% sina - [3]

Using [2] and [3] in equation [1], we get
r’sin*a=R.,* + 5,% cos’a

Since cos?’a <1 ,the above equation represents an epicycloid.
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